ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-30
    Description: This study examines effects of three friction models: a steady-state friction model (SS model), the LuGre model (LG model), and the revised LuGre model (RLG model) on the motion simulation accuracy of a pneumatic cylinder. An experimental set-up of an electro-pneumatic servo system is built, and characteristics of the piston position, the pressures in the two-cylinder chambers and the friction force are measured and calculated under different control inputs to the proportional flow control valves. Mathematical model of the electro-pneumatic servo system is derived, and simulations are carried out under the same conditions as the experiments. Comparisons between measured characteristics and simulated ones show that the RLG model can give the best agreement among the three friction models while the LG model can only simulate partly the stick-slip motion of the piston at low velocities. The comparison results also show that the SS model used in this study is unable to simulate the stick-slip motion as well as creates much oscillations in the friction force characteristics at low velocities.
    Print ISSN: 2191-9151
    Electronic ISSN: 2191-916X
    Topics: Physics
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-16
    Description: Recent flood dynamics of the Mekong Delta have raised concerns about an increased flood risk downstream in the Vietnamese Mekong Delta. Accelerated high dike building on the floodplains of the upper delta to allow triple cropping of rice has been linked to higher river water levels in the downstream city of Can Tho. This paper assesses the hydraulic impacts of upstream dike construction on the flood hazard downstream in the Vietnamese Mekong Delta. We combined the existing one-dimensional (1-D) Mekong Delta hydrodynamic model with a quasi-two-dimensional (2-D) approach. First we calibrated and validated the model using flood data from 2011 and 2013. We then applied the model to explore the downstream water dynamics under various scenarios of high dike construction in An Giang Province and the Long Xuyen Quadrangle. Calculations of water balances allowed us to trace the propagation and distribution of flood volumes over the delta under the different scenarios. Model results indicate that extensive construction of high dikes on the upstream floodplains has had limited effect on peak river water levels downstream in Can Tho. Instead, the model shows that the impacts of dike construction, in terms of peak river water levels, are concentrated and amplified in the upstream reaches of the delta. According to our water balance analysis, river water levels in Can Tho have remained relatively stable, as greater volumes of floodwater have been diverted away from the Long Xuyen Quadrangle than the retention volume lost due to dike construction. Our findings expand on previous work on the impacts of water control infrastructure on flood risk and floodwater regimes across the delta.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-07
    Description: There is a large public concern about recent increases in flood risks in the downstream part of the Vietnamese Mekong Delta. Pronounced recent expansion of high-dike constructions in the floodplains of the upper delta are associated with observed increases in river water levels in the downstream province of Can Tho. In this paper the hydraulic impact of upstream dike construction on the flood hazards downstream the Mekong Delta is assessed through modelling of dike density scenarios in the flood hydrographs of 2011 and 2013. To do this, the existing Mekong delta one-dimensional (1D) hydrodynamic model was combined with a quasi-two dimensional (2D) approach to explore the change in water dynamics downstream under extensive high-dike developments in An Giang and Long Xuyen Quadrangle. Most studies are unable to explain where the floodwater goes. To address this, water balances have been established to trace the propagation and redistribution of flood volumes over the delta, which provides an extension of current work in this field. Model results indicate that the extensive construction of high dikes in the upstream floodplains have only limitedly impacts upon the downstream peak river water levels in Can Tho. Instead, model impacts on peak river water levels are concentrated and amplified in the upstream reaches of the delta. The water balance analysis shows the model is able to return fairly stable river water levels at Can Tho by diverting floodwater volumes away for the Long Xuyen Quadrangle in excess of the retention volume lost due the dike construction. This reduced inflow into the Quadrangle, and subsequent diversion of flood volumes to the Plain of Reeds and Cambodian floodplain can, however, not be fully validated due to a lack of monitoring data. The model's spatial re-distribution of flood volumes can be induced by the way the model is calibrated. As dike construction results, according to the model, in a reduction of floodwater volumes reaching the Long Xuyen Quadrangle, high-dike scenarios for the whole of An Giang province or for the entire Long Xuyen Quadrangle indicate only limited increases in upstream and downstream peak river water levels. Future assessments will have to be conducted on the scale of the entire Cambodia-Vietnamese Mekong Delta, with explicit calibration and validation of the Cambodian floodplain as a means to trace the re-distribution of flood volumes and peaks across the delta.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-22
    Description: Pingtung coastal plain, located at the active convergent boundary between Philippine Sea Plate and Eurasian Plate, is one of the most active areas regarding tectonic deformation in Taiwan. Groundwater over-pumping for aquaculture along the coast area of Pingtung plain induced a serious land subsidence problem for decades. How much land subsidence contributed by tectonic activity and groundwater pumping is a crucial issue for tectonic study and groundwater management in this area. This study collected the data in different fields and proposed a conceptual model to calculate the quantities of land subsidence caused by natural (tectonic) and human (pumping) factors. The data from the Global Positioning System (GPS) are used to illustrate the total subsidence concerning vertical displacement. A system called the multi-level compaction monitoring well (MCMW) is able to measure the vertical compaction in different depths from the earth surface to the depth of 200 m. Two GPS stations, named CLON and FALI, close to two MCMWs, named Jiadong and Fangliao, are adopted for analysis The data during 2007 and 2016 taken from MCMWs and groundwater observation wells indicate that the compaction in the shallow depth should be mainly caused by groundwater over-pumping due to their high correlation coefficients (from 0.58–0.95). The difference of the vertical deformation between GPS and MCMW indicates that there is deformation beyond the depth within 200 m. From the data and literature, the further vertical deformation should be due to tectonic activity associated with tectonic escape and extrusion of the Taiwan orogen with average vertical deformation from −3.0 to −4.4 mm. Therefore, the quantities of land subsidence contributed by local groundwater over-pumping and regional tectonic activities are successfully separated. The method and concept proposed in this study can be used in land subsidence quantification due to both tectonic activity and groundwater over-pumping.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-17
    Description: Organic aerosols generated from the smoldering combustion of wood critically impact air quality and health for billions of people worldwide; yet, the links between the chemical components and the optical or biological effects of woodsmoke aerosol (WSA) are still poorly understood. In this work, an untargeted analysis of the molecular composition of smoldering WSA, generated in a controlled environment from nine types of heartwood fuels (African mahogany, birch, cherry, maple, pine, poplar, red oak, redwood, and walnut), identified several hundred compounds using gas chromatography mass spectrometry (GC-MS) and nano-electrospray high-resolution mass spectrometry (HRMS) with tandem multistage mass spectrometry (MSn). The effects of WSA on cell toxicity as well as gene expression dependent on the aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) were characterized with cellular assays, and the visible mass absorption coefficients (MACvis) of WSA were measured with ultraviolet–visible spectroscopy. The WSAs studied in this work have significant levels of biological and toxicological activity, with exposure levels in both an outdoor and indoor environment similar to or greater than those of other toxicants. A correlation between the HRMS molecular composition and aerosol properties found that phenolic compounds from the oxidative decomposition of lignin are the main drivers of aerosol effects, while the cellulose decomposition products play a secondary role; e.g., levoglucosan is anticorrelated with multiple effects. Polycyclic aromatic hydrocarbons (PAHs) are not expected to form at the combustion temperature in this work, nor were they observed above the detection limit; thus, biological and optical properties of the smoldering WSA are not attributed to PAHs. Syringyl compounds tend to correlate with cell toxicity, while the more conjugated molecules (including several compounds assigned to dimers) have higher AhR activity and MACvis. The negative correlation between cell toxicity and AhR activity suggests that the toxicity of smoldering WSA to cells is not mediated by the AhR. Both mass-normalized biological outcomes have a statistically significant dependence on the degree of combustion of the wood. In addition, our observations support the fact that the visible light absorption of WSA is at least partially due to charge transfer effects in aerosols, as previously suggested. Finally, MACvis has no correlation with toxicity or receptor signaling, suggesting that key chromophores in this work are not biologically active on the endpoints tested.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-22
    Description: The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-03
    Description: Recent advances in our knowledge of the gas-phase oxidation of isoprene, the impact of chamber walls on secondary organic aerosol (SOA) mass yields, and aerosol measurement analysis techniques warrant reevaluating SOA yields from isoprene. In particular, SOA from isoprene oxidation under high-NOx conditions forms via two major pathways: (1) low-volatility nitrates and dinitrates (LV pathway) and (2) hydroxymethyl-methyl-α-lactone (HMML) reaction on a surface or the condensed phase of particles to form 2-methyl glyceric acid and its oligomers (2MGA pathway). These SOA production pathways respond differently to reaction conditions. Past chamber experiments generated SOA with varying contributions from these two unique pathways, leading to results that are difficult to interpret. This study examines the SOA yields from these two pathways independently, which improves the interpretation of previous results and provides further understanding of the relevance of chamber SOA yields to the atmosphere and regional or global modeling. Results suggest that low-volatility nitrates and dinitrates produce significantly more aerosol than previously thought; the experimentally measured SOA mass yield from the LV pathway is ∼0.15. Sufficient seed surface area at the start of the reaction is needed to limit the effects of vapor wall losses of low-volatility compounds and accurately measure the complete SOA mass yield. Under dry conditions, substantial amounts of SOA are formed from HMML ring-opening reactions with inorganic ions and HMML organic oligomerization processes. However, the lactone organic oligomerization reactions are suppressed under more atmospherically relevant humidity levels, where hydration of the lactone is more competitive. This limits the SOA formation potential from the 2MGA pathway to HMML ring-opening reactions with water or inorganic ions under typical atmospheric conditions. The isoprene SOA mass yield from the LV pathway measured in this work is significantly higher than previous studies have reported, suggesting that low-volatility compounds such as organic nitrates and dinitrates may contribute to isoprene SOA under high-NOx conditions significantly more than previously thought and thus deserve continued study.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-26
    Description: Organic nitrate chemistry is the primary control over the lifetime of nitrogen oxides (NOx) in rural and remote continental locations. As NOx emissions decrease, organic nitrate chemistry becomes increasingly important to urban air quality. However, the lifetime of individual organic nitrates and the reactions that lead to their production and removal remain relatively poorly constrained, causing organic nitrates to be poorly represented by models. Guided by recent laboratory and field studies, we developed a detailed gas-phase chemical mechanism representing most of the important individual organic nitrates. We use this mechanism within the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) to describe the role of organic nitrates in nitrogen oxide chemistry and in comparisons to observations. We find the daytime lifetime of total organic nitrates with respect to all loss mechanisms to be 2.6 h in the model. This is consistent with analyses of observations at a rural site in central Alabama during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013. The lifetime of the first-generation organic nitrates is ∼2 h versus the 3.2 h lifetime of secondary nitrates produced by oxidation of the first-generation nitrates. The different generations are subject to different losses, with dry deposition to the surface being the dominant loss process for the second-generation organic nitrates and chemical loss being dominant for the first-generation organic nitrates. Removal by hydrolysis is found to be responsible for the loss of ∼30  % of the total organic nitrate pool.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-18
    Description: Reactive nitrogen (N) emissions have increased over the last 150 years as a result of greater fossil fuel combustion and food production. The resulting increase in N deposition can alter the function of ecosystems, but characterizing its ecological impacts remains challenging, in part because of uncertainties in model-based estimates of N dry deposition. Here, we use the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric chemistry–climate model (AM3) coupled with the GFDL land model (LM3) to estimate dry deposition velocities. We leverage the tiled structure of LM3 to represent the impact of physical, hydrological, and ecological heterogeneities on the surface removal of chemical tracers. We show that this framework can be used to estimate N deposition at more ecologically relevant scales (e.g., natural vegetation, water bodies) than from the coarse-resolution global model AM3. Focusing on North America, we show that the faster removal of N over forested ecosystems relative to cropland and pasture implies that coarse-resolution estimates of N deposition from global models systematically underestimate N deposition to natural vegetation by 10 % to 30 % in the central and eastern US. Neglecting the sub-grid scale heterogeneity of dry deposition velocities also results in an underestimate (overestimate) of the amount of reduced (oxidized) nitrogen deposited to water bodies. Overall, changes in land cover associated with human activities are found to slow down the removal of N from the atmosphere, causing a reduction in the dry oxidized, dry reduced, and total (wet+dry) N deposition over the contiguous US of 8 %, 26 %, and 6 %, respectively. We also find that the reduction in the overall rate of removal of N associated with land-use change tends to increase N deposition on the remaining natural vegetation and facilitate N export to Canada. We show that sub-grid scale differences in the surface removal of oxidized and reduced nitrogen imply that projected near-term (2010–2050) changes in oxidized (−47 %) and reduced (+40 %) US N emissions will cause opposite changes in N deposition to water bodies (increase) and natural vegetation (decrease) in the eastern US, with potential implications for acidification and ecosystems.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-22
    Description: An offline-coupled model (WRF/Polyphemus) and an online-coupled model (WRF/Chem-MADRID) are applied to simulate air quality in July 2001 at horizontal grid resolutions of 0.5° and 0.125° over Western Europe. The model performance is evaluated against available surface and satellite observations. The two models simulate different concentrations in terms of domainwide performance statistics, spatial distribution, temporal variations, and column abundance. WRF/Chem-MADRID at 0.5° gives higher values than WRF/Polyphemus for the domainwide mean and over polluted regions in Central and southern Europe for all surface concentrations and column variables except for the tropospheric ozone residual (TOR). Compared with observations, WRF/Polyphemus gives better statistical performance for daily HNO3, SO2, and NO2 at the European Monitoring and Evaluation Programme (EMEP) sites, maximum 1 h O3 at the AirBase sites, PM2.5 at the AirBase sites, maximum 8 h O3 and PM10 composition at all sites, column abundance of CO, NO2, TOR, and aerosol optical depth (AOD), whereas WRF/Chem-MADRID gives better statistical performance for NH3, hourly SO2, NO2, and O3 at the AirBase and BDQA (Base de données de la qualité de l'air) sites, maximum 1 h O3 at the BDQA and EMEP sites, and PM10 at all sites. WRF/Chem-MADRID generally reproduces well the observed high hourly concentrations of SO2 and NO2 at most sites except for extremely high episodes at a few sites, and WRF/Polyphemus performs well for hourly SO2 concentrations at most rural or background sites where pollutant levels are relatively low, but it underpredicts the observed hourly NO2 concentrations at most sites. Both models generally capture well the daytime maximum 8 h O3 concentrations and diurnal variations of O3 with more accurate peak daytime and minimal nighttime values by WRF/Chem-MADRID, but neither model reproduces extremely low nighttime O3 concentrations at several urban and suburban sites due to underpredictions of NOx and thus insufficient titration of O3 at night. WRF/Polyphemus gives more accurate concentrations of PM2.5, and WRF/Chem-MADRID reproduces better the observations of PM10 concentrations at all sites. The differences between model predictions and observations are mostly caused by inaccurate representations of emissions of gaseous precursors and primary PM species, as well as biases in the meteorological predictions. The differences in model predictions are caused by differences in the heights of the first model layers and thickness of each layer that affect vertical distributions of emissions, model treatments such as dry/wet deposition, heterogeneous chemistry, and aerosol and cloud, as well as model inputs such as emissions of soil dust and sea salt and chemical boundary conditions of CO and O3 used in both models. WRF/Chem-MADRID shows a higher sensitivity to grid resolution than WRF/Polyphemus at all sites. For both models, the use of a finer grid resolution generally leads to an overall better statistical performance for most variables, with greater spatial details and an overall better agreement in temporal variations and magnitudes at most sites. The use of online biogenic volatile organic compound (BVOC) emissions gives better statistical performance for hourly and maximum 8 h O3 and PM2.5 and generally better agreement with their observed temporal variations at most sites. Because it is an online model, WRF/Chem-MADRID offers the advantage of accounting for various feedbacks between meteorology and chemical species. However, this model comparison suggests that atmospheric pollutant concentrations are most sensitive in state-of-the-science air quality models to vertical structure, inputs, and parameterizations for dry/wet removal of gases and particles in the model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...