ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-31
    Description: This paper investigates the relative importance of turbulence and aerosol effects on the broadening of the droplet size distribution (DSD) during the early stage of cloud and raindrop formation. A parcel–DNS (direct numerical simulation) hybrid approach is developed to seamlessly simulate the evolution of cloud droplets in an ascending cloud parcel. The results show that turbulence and cloud condensation nuclei (CCN) hygroscopicity are key to the efficient formation of large droplets. The ultragiant aerosols can quickly form embryonic drizzle drops and thus determine the onset time of autoconversion. However, due to their scarcity in natural clouds, their contribution to the total mass of drizzle drops is insignificant. In the meantime, turbulence sustains the formation of large droplets by effectively accelerating the collisions of small droplets. The DSD broadening through turbulent collisions is significant and therefore yields a higher autoconversion rate compared to that in a nonturbulent case. It is argued that the level of autoconversion is heavily determined by turbulence intensity. This paper also presents an in-cloud seeding scenario designed to scrutinize the effect of aerosols in terms of number concentration and size. It is found that seeding more aerosols leads to higher competition for water vapor, reduces the mean droplet radius, and therefore slows down the autoconversion rate. On the other hand, increasing the seeding particle size can buffer such a negative feedback. Despite the fact that the autoconversion rate is prominently altered by turbulence and seeding, bulk variables such as liquid water content (LWC) stays nearly identical among all cases. Additionally, the lowest autoconversion rate is not co-located with the smallest mean droplet radius. The finding indicates that the traditional Kessler-type or Sundqvist-type autoconversion parameterizations, which depend on the LWC or mean radius, cannot capture the drizzle formation process very well. Properties related to the width or the shape of the DSD are also needed, suggesting that the scheme of Berry and Reinhardt (1974) is conceptually better. It is also suggested that a turbulence-dependent relative-dispersion parameter should be considered.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-22
    Description: To analyze the generation of different ground fissure disasters, two typical ground fissures were selected. With geological survey and exploration data, the spatial characteristics of the Songzhuang and Gaoliying fissures were investigated. The different occurrence factors for the Songzhuang and Gaoliying fissures were analyzed based on geological structure and groundwater. The conclusions contain are as follows. The affected body of the Songzhuang fissure exhibits obvious tensile deformation, and it is not contact with buried faults. The fracture-affected body of the Gaoliying fissure shows obvious vertical dislocation and shear, and this is compounded with buried faults. The distribution characteristic of the Songzhuang fissure was controlled by the tectonics and the normal fault, while the buried fault not only control the distribution feature of the Gaoliying fissure but also controlled its deformation characteristic. A buried fault is the geological background for the formation of the Gaoliying fissure. The long-term exploitation of groundwater has caused the horizontal deformation of the soil and the rigid rotation of stratum in the subsidence edge. Both of them are the reason for the tensile deformation. Due to the activities of buried faults and differential subsidence in small areas, the affected bodies of the Gaoliying fissure showed vertical dislocation and shear deformation.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-02
    Description: Budget analysis of a tendency equation is widely utilized in numerical studies to quantify different physical processes in a simulated system. While such analysis is often post-processed when the output is made available, it is well acknowledged that the closure of a budget is difficult to achieve without temporal and/or spatial averaging. Nevertheless, the development of errors in such calculations has not been systematically investigated. In this study, an inline budget retrieval method is first developed in the WRF v3.8.1 model and tested on a 2D idealized slantwise convection case with a focus on the momentum equations. This method extracts all the budget terms following the model solver, which gives a high accuracy, with a residual term always less than 0.1 % of the tendency term. Then, taking the inline values as truth, several offline budget analyses with different commonly used simplifications are performed to investigate how they may affect the accuracy of the estimation of individual terms and the resultant residual. These assumptions include using a lower-order advection operator than the one used in the model, neglecting grid staggering, or following a mathematically equivalent but transformed format of the governing equations. Errors in these post-processed analyses are found mostly over the area where the dynamics are the most active, thus impairing the subsequent physical interpretation. A maximum 99th percentile residual can reach 〉50 % of the concurrent tendency term, indicating the danger of neglecting the residual term as done in many budget studies. This work provides general guidance not only for budget diagnoses with the WRF model but also for minimizing the errors in post-processed budget calculations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-23
    Description: The regional transport of air pollutants, controlled by emission sources and meteorological factors, results in a complex source–receptor relationship of air pollution change. Wuhan, a metropolis in the Yangtze River middle basin (YRMB) of central China, experienced heavy air pollution characterized by hourly PM2.5 concentrations reaching 471.1 µg m−3 in January 2016. To investigate the regional transport of PM2.5 over central eastern China (CEC) and the meteorological impact on wintertime air pollution in the YRMB area, observed meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented noteworthy cases of heavy PM2.5 pollution in the YRMB area with unique “non-stagnant” meteorological conditions of strong northerly winds, no temperature inversion, and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer that are typically observed in heavy air pollution over most regions in China. The regional transport of PM2.5 over CEC aggravated PM2.5 levels, thus creating heavy air pollution in the YRMB area. This demonstrates a source–receptor relationship between the originating air pollution regions in CEC and the receiving YRMB region. Furthermore, a backward trajectory simulation using a Flexible Particle dispersion (FLEXPART) Weather Research and Forecasting (WRF) model to integrate the air pollutant emission inventory over China was used to explore the patterns of regional transport of PM2.5 governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon season. It was estimated that the regional transport of PM2.5 from non-local air pollutant emissions contributes more than 65 % of the PM2.5 concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over China as a causative factor of heavy air pollution over the YRMB area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-25
    Description: In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-13
    Description: We present a new product with explicit aerosol corrections, POMINO-TROPOMI, for tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) over East Asia, based on the newly launched TROPOspheric Monitoring Instrument with an unprecedented high horizontal resolution. Compared to the official TM5-MP-DOMINO (OFFLINE) product, POMINO-TROPOMI shows stronger concentration gradients near emission source locations and better agrees with MAX-DOAS measurements (R2=0.75; NMB=0.8 % versus R2=0.68, NMB=-41.9 %). Sensitivity tests suggest that implicit aerosol corrections, as in TM5-MP-DOMINO, lead to underestimations of NO2 columns by about 25 % over the polluted northern East China region. Reducing the horizontal resolution of a priori NO2 profiles would underestimate the retrieved NO2 columns over isolated city clusters in western China by 35 % but with overestimates of more than 50 % over many offshore coastal areas. The effect of a priori NO2 profiles is more important under calm conditions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-09-30
    Description: Nitrate, sulfate and ammonium (NSA) are the main secondary inorganic aerosols of PM2.5 and play an important role in air pollution. In this study, a 3-year observational experiment was conducted from 1 January 2015 to 31 December 2017, in Chengdu, southwest China. NSA pollution characteristics, chemical conversion generation, emission reduction control sensitivity and pollutant regional transport characteristics were analyzed. NSA are the most important chemical compositions of particles with aerodynamic equivalent diameter ≤2.5 µm in ambient air (PM2.5), and the contribution of nitrate to the accumulation of PM2.5 concentration is greater than that of sulfate and ammonium. NSA also have obvious characteristics of annual, monthly, seasonal, diurnal and weekly variations. Through observation data and model simulation, it was also found that the existence of an aerosol aqueous environment plays an important role in the formation and existence of NSA. Sensitivity analysis between NSA found that controlling NO3- and SO42- plays an important role in reducing the contribution of NSA to PM2.5, which also implies that the current control of NOx and SO2 is important for improving air pollution. Combined with meteorological conditions and potential source contribution function (PSCF) analysis, local emissions and regional emissions of pollutants are found to have important impacts on Chengdu's atmospheric environment. This research result not only provides an assessment of the current atmospheric emission reduction effect but also provides an important reference for atmospheric pollution control.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-03
    Description: Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 ∘C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at −50 ∘C compared with 25 ∘C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-06
    Description: Despite the significant progress in improving chemical transport models (CTMs), applications of these modeling endeavors are still subject to large and complex model uncertainty. The Model Inter-Comparison Study for Asia III (MICS-Asia III) has provided the opportunity to assess the capability and uncertainty of current CTMs in East Asian applications. In this study, we have evaluated the multi-model simulations of nitrogen dioxide (NO2), carbon monoxide (CO) and ammonia (NH3) over China under the framework of MICS-Asia III. A total of 13 modeling results, provided by several independent groups from different countries and regions, were used in this study. Most of these models used the same modeling domain with a horizontal resolution of 45 km and were driven by common emission inventories and meteorological inputs. New observations over the North China Plain (NCP) and Pearl River Delta (PRD) regions were also available in MICS-Asia III, allowing the model evaluations over highly industrialized regions. The evaluation results show that most models captured the monthly and spatial patterns of NO2 concentrations in the NCP region well, though NO2 levels were slightly underestimated. Relatively poor performance in NO2 simulations was found in the PRD region, with larger root-mean-square error and lower spatial correlation coefficients, which may be related to the coarse resolution or inappropriate spatial allocations of the emission inventories in the PRD region. All models significantly underpredicted CO concentrations in both the NCP and PRD regions, with annual mean concentrations that were 65.4 % and 61.4 % underestimated by the ensemble mean. Such large underestimations suggest that CO emissions might be underestimated in the current emission inventory. In contrast to the good skills for simulating the monthly variations in NO2 and CO concentrations, all models failed to reproduce the observed monthly variations in NH3 concentrations in the NCP region. Most models mismatched the observed peak in July and showed negative correlation coefficients with the observations, which may be closely related to the uncertainty in the monthly variations in NH3 emissions and the NH3 gas–aerosol partitioning. Finally, model intercomparisons have been conducted to quantify the impacts of model uncertainty on the simulations of these gases, which are shown to increase with the reactivity of species. Models contained more uncertainty in the NH3 simulations. This suggests that for some highly active and/or short-lived primary pollutants, like NH3, model uncertainty can also take a great part in the forecast uncertainty in addition to the emission uncertainty. Based on these results, some recommendations are made for future studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-20
    Description: Plumes from the boreal spring biomass burning (BB) in northern peninsular Southeast Asia (nPSEA) are lifted into the subtropical jet stream and transported and deposited across nPSEA, South China, Taiwan and even the western North Pacific Ocean. This paper as part of the Seven SouthEast Asian Studies (7-SEAS) project effort attempts to improve the chemical weather prediction capability of the Weather Research and Forecasting coupled with the Community Multiscale for Air Quality (WRF–CMAQ) model over a vast region, from the mountainous near-source burning sites at nPSEA to its downwind region. Several sensitivity analyses of plume rise are compared in the paper, and it is discovered that the initial vertical allocation profile of BB plumes and the plume rise module (PLMRIM) are the main reasons causing the inaccuracies of the WRF–CMAQ simulations. The smoldering emission from the Western Regional Air Partnership (WRAP) empirical algorithm included has improved the accuracies of PM10, O3 and CO at the source. The best performance at the downwind sites is achieved with the inline PLMRIM, which accounts for the atmospheric stratification at the mountainous source region with the FINN burning emission dataset. Such a setup greatly improves not only the BB aerosol concentration prediction over near-source and receptor ground-based measurement sites but also the aerosol vertical distribution and column aerosol optical depth of the BB aerosol along the transport route. The BB aerosols from nPSEA are carried by the subtropical westerlies in the free troposphere to the western North Pacific, while BB aerosol has been found to interact with the local pollutants in the Taiwan region through three conditions: (a) overpassing western Taiwan and entering the central mountain area, (b) mixing down to western Taiwan, (c) transport of local pollutants upwards and mixing with a BB plume on higher ground. The second condition, which involves the prevailing high-pressure system from Asian cold surge, is able to impact most of the population in Taiwan.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...