ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-09-20
    Description: GFZ (German Research Centre for Geosciences) set up the Zugspitze Geodynamic Observatory Germany with a worldwide unique installation of a superconducting gravimeter at the summit of Mount Zugspitze on top of the Partnach spring catchment. This high alpine catchment is well instrumented, acts as natural lysimeter and has significant importance for water supply to its forelands, with a large mean annual precipitation of 2080 mm and a long seasonal snow cover period of 9 months, while showing a high sensitivity to climate change. However, regarding the majority of alpine regions worldwide, there is only limited knowledge on temporal water storage variations due to sparsely distributed hydrological and meteorological sensors and the large variability and complexity of signals in alpine terrain. This underlines the importance of well-equipped areas such as Mount Zugspitze serving as natural test laboratories for improved monitoring, understanding and prediction of alpine hydrological processes. The observatory superconducting gravimeter, OSG 052, supplements the existing sensor network as a novel hydrological sensor system for the direct observation of the integral gravity effect of total water storage variations in the alpine research catchment at Zugspitze. Besides the experimental set-up and the available data sets, the gravimetric methods and gravity residuals are presented based on the first 27 months of observations from 29 December 2018 to 31 March 2021. The snowpack is identified as being a primary contributor to seasonal water storage variations and, thus, to the gravity residuals with a signal range of up to 750 nm s−2 corresponding to 1957 mm snow water equivalent measured with a snow scale at an altitude of 2420 m at the end of May 2019. Hydro-gravimetric sensitivity analysis reveal a snow–gravimetric footprint of up to 4 km distance around the gravimeter, with a dominant gravity contribution from the snowpack in the Partnach spring catchment. This shows that the hydro-gravimetric approach delivers representative integral insights into the water balance of this high alpine site.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: The evaluation of snowpack models capable of accounting for snow management in ski resorts is a major step towards acceptance of such models in supporting the daily decision-making process of snow production managers. In the framework of the EU Horizon 2020 (H2020) project PROSNOW, a service to enable real-time optimization of grooming and snow-making in ski resorts was developed. We applied snow management strategies integrated in the snowpack simulations of AMUNDSEN, Crocus, and SNOWPACK–Alpine3D for nine PROSNOW ski resorts located in the European Alps. We assessed the performance of the snow simulations for five winter seasons (2015–2020) using both ground-based data (GNSS-measured snow depth) and spaceborne snow maps (Copernicus Sentinel-2). Particular attention has been devoted to characterizing the spatial performance of the simulated piste snow management at a resolution of 10 m. The simulated results showed a high overall accuracy of more than 80 % for snow-covered areas compared to the Sentinel-2 data. Moreover, the correlation to the ground observation data was high. Potential sources for local differences in the snow depth between the simulations and the measurements are mainly the impact of snow redistribution by skiers; compensation of uneven terrain when grooming; or spontaneous local adaptions of the snow management, which were not reflected in the simulations. Subdividing each individual ski resort into differently sized ski resort reference units (SRUs) based on topography showed a slight decrease in mean deviation. Although this work shows plausible and robust results on the ski slope scale by all three snowpack models, the accuracy of the results is mainly dependent on the detailed representation of the real-world snow management practices in the models. As snow management assessment and prediction systems get integrated into the workflow of resort managers, the formulation of snow management can be refined in the future.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...