ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Microscopy techniques have been widely applied to observe cellular ultrastructure. Most of these techniques, such as transmission electron microscopy, produce high‐resolution images but they may require extensive preparation, hampering their application for in vivo examination. Other approaches, such as fluorescent and fluorogenic probes can be applied not only to fixed specimens but also to living cells when the probes are non‐toxic. Fluorescence‐based methods, which are generally relatively easy to use, allow visual and (semi) quantitative studies of the ultrastructural organization and processes of the cell under natural as well as manipulated conditions. To date, there are relatively few published studies on the nearly ubiquitous marine protistan group Foraminifera that have used fluorescent and fluorogenic probes, despite their huge potential. The aim of the present contribution is to document the feasible application of a wide array of these probes to foraminiferal biology. More specifically, we applied fluorescence‐based probes to study esterase activity, cell viability, calcium signalling, pH variation, reactive oxygen species, neutral and polar lipids, lipid droplets, cytoskeleton structures, Golgi complex, acidic vesicles, nuclei, and mitochondria in selected foraminiferal species.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-03
    Description: [1]  The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-19
    Description: In this study, an object-based verification method was used to reveal the existence of systematic errors in three satellite precipitation products: Tropical Rainfall Measurement Mission (TRMM), Climate Prediction Center Morphing Technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN). Mesoscale convective systems (MCSs) for the austral summer 2002–2003 in the La Plata river basin, southeastern South America, were analyzed with the Contiguous Rain Area (CRA) method. Errors in storms intensity, volume, and spatial location were evaluated. A macroscale hydrological model was used to assess the impact of spatially shifted precipitation on streamflows simulations. PERSIANN underestimated the observed average rainfall rate and maximum rainfall consistent with the detection of storm areas systematically larger than observed. CMORPH overestimated the average rainfall rate while the maximum rainfall was slightly underestimated. TRMM average rainfall rate and rainfall volume correlated extremely well with ground observations whereas the maximum rainfall was systematically overestimated suggesting deficiencies in the bias correction procedure to filter noisy measurements. The preferential direction of error displacement in satellite-estimated MCSs was in the east-west direction for CMORPH and TRMM. Discrepancies in the fine structure of the storms dominated the error decomposition of all satellite products. Errors in the spatial location of the systems influenced the magnitude of simulated peaks but did not have a significant impact on the timing indicating that the system's response to precipitation was mitigating the effect of the errors.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-09
    Description: [1]  In this study, we present the first in-situ continuous measurements of electron flux modulations in the near-equatorial magnetosphere correlated with pulsating aurora (PA) observations. The contested conjecture that the source of these electrons originates near the equator, made decades ago using sounding rocket data, has now been confirmed using this data. We compared the frequencies of equatorial electron flux pulsations and PA luminosity fluctuations at their ionospheric footprint, using simultaneous satellite- and ground-based data from GOES 13 and THEMIS instrumentation. Observations of PA were obtained on 15 March 2008 using a THEMIS all-sky imager (ASI) located in northern Canada. The field line footprint of the geostationary GOES 13 satellite, mapped down to the ionosphere at ~100 km, falls within the field-of-view of the ASI. We examined electron flux data from the Magnetospheric Electron Detector (MAGED) on GOES 13, in the energy range of 30 to 50 keV, by computing an array of the correlation coefficients between the pixel luminosity for each individual pixel of the ASI images and the flux measurements at the satellite. The results reveal a direct correlation between diffuse luminosity fluctuation periods near the ground and particle pulsation periods. The time variance between the two data sets was examined in order to explore the validity of the equatorial source region premise. The resulting time lag of 〈 1 second in the PA measurements is consistent with this claim. We also report on a preliminary quantification of the loss cone using the MAGED telescope response functions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-02
    Description: The probability for a halo coronal mass ejection (CME) to be geoeffective is assumed to be higher the closer the CME launch site is located to the solar central meridian. However, events far from the central meridian may produce severe geomagnetic storms, like the case in April 2000. In this work, we study the possible geoeffectiveness of full halo CMEs with the source region situated at solar limb. For this task, we select all limb full halo (LFH) CMEs that occurred during solar cycle 23, and we search for signatures of geoeffectiveness between 1 and 5 days after the first appearance of each CME in the LASCO C2 field of view. When signatures of geomagnetic activity are observed in the selected time window, interplanetary data are carefully analyzed in order to look for the cause of the geomagnetic disturbance. Finally, a possible association between geoeffective interplanetary signatures and every LFH CME in solar cycle 23 is checked in order to decide on the CME's geoeffectiveness. After a detailed analysis of solar, interplanetary, and geomagnetic data, we conclude that of the 25 investigated events, there are only four geoeffective LFH CMEs, all coming from the west limb. The geoeffectiveness of these events seems to be moderate, turning to intense in two of them as a result of cumulative effects from previous mass ejections. We conclude that ejections from solar locations close to the west limb should be considered in space weather, at least as sources of moderate disturbances.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-06-01
    Print ISSN: 0003-021X
    Electronic ISSN: 1558-9331
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-11-02
    Print ISSN: 0014-5793
    Electronic ISSN: 1873-3468
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-06
    Description: In situ measurements of aerosol optical properties and particle size distributions were made in the summer of 2008 at the ALOMAR station facility (69°16' N, 16°00' E), located in a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Our goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. Data from 13 June to 26 August 2008 were available and the statistical data for all instruments were calculated based on the hourly averages. The overall data coverage was approximately 72%. The hourly mean values of the light-scattering coefficient, σs, and the light-absorption coefficient, σa, at 550 nm were 5.41 Mm−1 (StD = 3.55 Mm−1) and 0.40 Mm−1 (StD = 0.27 Mm−1), respectively. The scattering/absorption Ångström exponents, αs,a, were used in a detailed analysis of the variations of the spectral shape of σs,a. While αs indicates the presence of two particle sizes corresponding to two types of aerosols, αa indicates only one type of absorbing aerosol particle. αa values greater than 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships between this parameter and the absorption/scattering coefficients and the Ångström exponents are presented. Any absorption value may lead to the lowest values of ω0, whereas only the lowest scattering values were observed in the lowest range of ω0. For a given absorption value, lower ω0 were observed for smaller αs. The submicrometer, micrometer and total concentrations of the particles presented hourly mean values of 1277 cm−3 (StD = 1563 cm−3), 1 cm−3 (StD = 1 cm−3) and 2463 cm−3 (StD = 4251 cm−3), respectively, and the modal correlations were also investigated. The optical and microphysical parameters, as well as their relationship with each other, are reported. σs correlated strongly with the number concentration of accumulation mode particles and more strongly with the micrometer fraction of particles, but weak correlations were observed for the Aitken and nucleation modes. The origins and pathways of the air masses were examined, and based on sector classification, a relationship between the air mass origin, the optical parameters and the size distributions was established. The low values of the optical and microphysical parameters indicate that the predominant regional aerosol is mostly clean and the shape of the size distribution is characterized by bimodal median size distributions. However, the relationships between the air mass origins and the parameters studied allow us to describe two characteristic situations: the one of the northern and western air masses, which were predominantly composed of marine aerosols and presented the lowest optical and microphysical values observed, indicating predominantly non-absorbent and coarser particles; and the one of the eastern and southern air masses, in which continental aerosols were predominant and exhibited higher values for all parameters, indicating the presence of smaller absorbent particles. The north-northeastern air masses presented the strongest Aitken mode, indicating more recently formed particles, and the southeastern air masses presented the strongest accumulation mode (however, the southeastern air masses were the least common, accounting for only 3% of occurrences).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-23
    Description: The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured radiances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties.The optimum fit is obtained for a certain combination of aerosol components, which are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). However, other aerosol properties could be provided. In the aerosol retrieval algorithm (ADV) applied to data from the Advanced Along Track Scanning Radiometer (AATSR), four aerosol components are used, each of which is defined by their (lognormal) size distribution and a complex refractive index. The fine mode fraction is a continuous mixture of weakly and strongly absorbing components which allows for the definition of any absorbing aerosol model within the specified limits. Hence, assuming that the correct aerosol model is selected during the retrieval process, also the single scattering albedo (SSA) should correctly be retrieved. In this paper we present the SSA retrieval using the ADV algorithm by application to wildfires over Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE is 0.03 for SSA and 0.02 for AAOD. The SSA is further evaluated by comparison with the SSA retrieved from the Ozone Monitoring Instrument (OMI). The SSA retrieved from both instruments show similar features, but the AATSR-retrieved SSA values over areas affected by wildfires are lower.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-23
    Description: In this study, a method is presented to retrieve the surface reflectance using reflectance measured at the top of the atmosphere for the two views provided by the Along-Track Scanning Radiometer (AATSR). In the first step, the aerosol optical depth (AOD) is obtained using the AATSR dual view algorithm (ADV) by eliminating the effect of the surface on the measured radiances. Hence the AOD is independent of surface properties and can thus be used in the second step to provide the aerosol part of the atmospheric correction which is needed for the surface reflectance retrieval. The method is applied to provide monthly maps of both AOD and surface reflectance at two wavelengths (555 and 659 nm) for the whole year of 2007. The results are validated vs. surface reflectance provided by the AERONET-based Surface Reflectance Validation Network (ASRVN). Correlation coefficients are 0.8 and 0.9 for 555 and 659 nm, respectively. The standard deviation is 0.001 for both wavelengths and the absolute error is less than 0.02. Pixel-by-pixel comparison with MODIS (MODerate resolution Imaging Spectrometer) monthly averaged surface reflectances show a good correlation (0.91 and 0.89 for 555 and 659 nm, respectively) with some (up to 0.05) overestimation by ADV over bright surfaces. The difference between the ADV and MODIS retrieved surface reflectance is smaller than ±0.025 for 68.3% of the collocated pixels at 555 nm and 79.9% of the collocated pixels at 659 nm. An application of the results over Australia illustrates the variation of the surface reflectances for different land cover types. The validation and comparison results suggest that the algorithm can be successfully used for the both AATSR and ATSR-2 (which has characteristics similar to AATSR) missions, which together cover 17 years period of measurements (1995–2012), as well as a prototype for The Sea and Land Surface Temperature Radiometer (SLSTR) to be launched in 2015 onboard the Sentinel-3 satellite.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...