ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
  • Springer Nature  (1)
  • 2010-2014  (2)
  • 1995-1999  (1)
  • 1935-1939  (1)
  • 1
    Publication Date: 1997-06-30
    Description: : Better understanding of field-scale unsaturated zone transport mechanisms is required if the fate of contaminants released at the surface is to be predicted accurately. Interpretation of results from direct tracer sampling in terms of operative hydraulic processes is often limited by the poor spatial coverage and the invasive nature of such techniques. Cross-borehole electrical imaging during progress of saline tracer migration is proposed to assist investigation of field-scale solute transport in the unsaturated zone. Electrical imaging provides non-destructive, high density and spatially continuous sampling of saline tracer transport injected over an area of the ground surface between two boreholes. The value of electrical imaging was tested at a field site on an interfluve of the UK Chalk aquifer. Improved understanding of active transport mechanisms in the unsaturated zone of the UK Chalk is required to predict its vulnerability to surface pollutants. In a tracer experiment in May 1996, a conductive saline tracer was infiltrated over 18 m2 at an average rate of 47 mm day-1 for 56 hours. Cross-borehole images obtained during and after infiltration show a large, homogenous, resistivity reduction in the top 3 m, no change between 3 m and 6 m depth, and smaller, inhomogeneous, resistivity reductions below 6 m depth. The resistivity has reduced at down to 15 m depth less than 2 days after tracer infiltration began. Hydrological interpretation of a sequence of electrical images obtained prior to, during, and up to three months after tracer injection suggests: (1) rapid tracer entry into the soil zone and upper 2 m of weathered Chalk, (2) intergranular transport of the bulk of the tracer, (3) a significant fissure flow component transporting tracer to at least 15 m depth in 31 hours, and (4) vertical changes in transport mechanisms possibly caused by interception of fissures by marl layers. The results of this experiment suggest that electrical imaging can assist the description of unsaturated zone hydraulic mechanisms through visual identification of spatial and temporal variations in transport processes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-24
    Description: Northern Peatlands cover more than 350 million ha and are an important source of methane (CH4) and other biogenic gases contributing to climate change. Free phase gas (FPG) accumulation and episodic release has recently been recognized as an important mechanism for biogenic gas flux from peatlands. It is likely that gas production and groundwater flow are interconnected in peatlands: groundwater flow influences gas production by regulating geochemical conditions and nutrient supply available for methanogenesis while FPG influences groundwater flow through a reduction in peat permeability and by creating excess pore water pressures. Water samples collected from three well sites at Caribou Bog, Maine, show substantial dissolved CH4 (5–16 mg L−1) in peat waters below 2 m depth and an increase in concentrations with depth. This suggests substantial production and storage of CH4 in deep peat that may be episodically released as FPG. Two minute increment pressure transducer data reveal approximately 5 cm fluctuations in hydraulic head from both deep and shallow peat that are believed to be indicative of FPG release. FPG release persists up to 24 h during decreasing atmospheric pressure and a rising water table. Preferential flow is seen towards an area of relatively lower hydraulic head associated with the esker and pool system. Increased CH4 concentrations are also found at the depth of the esker crest suggesting that the high permeability esker is acting as a conduit for groundwater flow, driving a downward transport of labile carbon, resulting in higher rates of CH4 production.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-10
    Description: Northern peatlands cover more than 350 million ha and are an important source of methane (CH4) and other biogenic gases contributing to climate change. Free-phase gas (FPG) accumulation and episodic release has recently been recognized as an important mechanism for biogenic gas flux from peatlands. It is likely that gas production and groundwater flow are interconnected in peatlands: groundwater flow influences gas production by regulating geochemical conditions and nutrient supply available for methanogenesis, while FPG influences groundwater flow through a reduction in peat permeability and by creating excess pore water pressures. Water samples collected from three well sites at Caribou Bog, Maine, show substantial dissolved CH4 (5–16 mg L−1) in peat waters below 2 m depth and an increase in concentrations with depth. This suggests production and storage of CH4 in deep peat that may be episodically released as FPG. Two min increment pressure transducer data reveal approximately 5 cm fluctuations in hydraulic head from both deep and shallow peat that are believed to be indicative of FPG release. FPG release persists up to 24 h during decreasing atmospheric pressure and a rising water table. Preferential flow is seen towards an area of relatively lower hydraulic head associated with the esker and pool system. Increased CH4 concentrations are also found at the depth of the esker crest, suggesting that the high permeability esker is acting as a conduit for groundwater flow, driving a downward transport of labile carbon, resulting in higher rates of CH4 production.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1935-04-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...