ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (283)
  • Copernicus  (9)
Collection
Keywords
  • 1
    Publication Date: 2020-04-29
    Description: Oceanic anoxic events (OAEs) document major perturbations of the global carbon cycle with repercussions for the Earth's climate and ocean circulation that are relevant to understanding future climate trends. Here, we compare the onset and development of Cretaceous OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their carbon isotope (δ13C) records, with long-lasting negative excursions preceding the onset of the main positive excursions, supporting the view that both OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. However, there are substantial differences, notably in the durations of individual phases within the δ13C positive excursions of both OAEs. Based on analysis of cyclic sediment variations, we estimate the duration of individual phases within OAE1a and OAE2. We identify (1) a precursor phase (negative excursion) lasting ∼430 kyr for OAE1a and ∼130 kyr for OAE2, (2) an onset phase of ∼390 and ∼70 kyr, (3) a peak phase of ∼600 and ∼90 kyr, (4) a plateau phase of ∼1340 and ∼200 kyr, and (5) a recovery phase of ∼380 and ∼440 kyr. The total duration of the positive δ13C excursion is estimated at 2700 kyr for OAE1a and 790 kyr for OAE2, and that of the main carbon accumulation phase is estimated at 980 and 180 kyr. The long-lasting peak, plateau and recovery phases imply fundamental changes in global nutrient cycles either (1) by submarine basalt–seawater interactions, (2) through excess nutrient inputs to the oceans by increasing continental weathering and river discharge, or (3) through nutrient recycling from the marine sediment reservoir. We investigated the role of phosphorus in the development of carbon accumulation by analysing phosphorus speciation across OAE2 and the mid-Cenomanian Event (MCE) in the Tarfaya Basin. The ratios of organic carbon and total nitrogen to reactive phosphorus (Corg∕Preact and Ntotal∕Preact) prior to OAE2 and the MCE hover close to or below the Redfield ratio characteristic of marine organic matter. Decreases in reactive phosphorus resulting in Corg∕Preact and Ntotal∕Preact above the Redfield ratio during the later phase of OAE2 and the MCE indicate leakage from the sedimentary column into the water column under the influence of intensified and expanded oxygen minimum zones. These results suggest that a positive feedback loop, rooted in the benthic phosphorus cycle, contributed to increased marine productivity and carbon burial over an extended period of time during OAEs.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-03
    Description: Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-25
    Description: The eastern tropical South Pacific (ETSP) represents one of the most productive areas in the ocean that is characterised by a pronounced oxygen minimum zone (OMZ). Particulate organic matter (POM) that sinks out of the euphotic zone is supplied to the anoxic sediments and utilised by microbial communities, and the degradation of POM is associated with the production and reworking of dissolved organic matter (DOM). The release of DOM to the overlying waters may, therefore, represent an important organic matter escape mechanism from remineralisation within sediments but has received little attention in OMZ regions so far. Here, we combine measurements of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) with DOM optical properties in the form of chromophoric (CDOM) and fluorescent (FDOM) DOM from pore waters and near-bottom waters of the ETSP off Peru. We evaluate diffusion-driven fluxes and net in situ fluxes of DOC and DON to investigate processes affecting DOM cycling at the sediment–water interface along a transect at 12∘ S. To our knowledge, these are the first data for sediment release of DON and pore water CDOM and FDOM for the ETSP off Peru. Pore water DOC accumulated with increasing sediment depth, suggesting an imbalance between DOM production and remineralisation within sediments. High DON accumulation resulted in very low pore water DOC ∕ DON ratios (≤1) which could be caused by an “uncoupling” in DOC and DON remineralisation. Diffusion-driven fluxes of DOC and DON exhibited high spatial variability and ranged from 0.2±0.1 to 2.5±1.3 mmolm-2d-1 and from -0.04±0.02 to 3.3±1.7 mmolm-2d-1, respectively. Generally low net in situ DOC and DON fluxes, as well as a steepening of spectral inclination (S) of CDOM and an increase in humic-like DOM at the sediment–water interface over time, indicated active microbial DOM utilisation. The latter may potentially be stimulated by the presence of nitrate (NO3-) and nitrite (NO2-) in the water column. The microbial DOC utilisation rates, estimated in our study, are potentially sufficient to support denitrification rates of 0.2–1.4 mmolm-2d-1, suggesting that the sediment release of DOM may on occasion contribute to nitrogen loss processes in the ETSP off Peru.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-29
    Description: The kinetics of particulate organic carbon (POC) mineralization in marine surface sediments is not well constrained. This creates considerable uncertainties when benthic processes are considered in global biogeochemical or Earth system circulation models to simulate climate-ocean interactions and biogeochemical tracers in the ocean. In an attempt to improve our understanding of the rate and depth distribution of organic carbon mineralization in bioturbated (0–10 cm) sediments, we parameterized a 1-D diagenetic model that simulates the reactivity of three discrete POC pools at global scale (a multi-G model). The rate constants of the three reactive classes (highly reactive, reactive, refractory) are fixed and determined to be 70 yr−1, 0.5 yr−1, and ~0.001 yr−1, respectively, based on the Martin curve model for pelagic POC degradation. In contrast to previous approaches, the reactivity of the organic material degraded in the seafloor is continuous with, and set by, the apparent reactivity of material sinking through the water column. The model is able to simulate a global database (185 stations) of benthic oxygen and nitrate fluxes across the sediment-water interface in addition to porewater oxygen and nitrate distributions and organic carbon burial efficiencies. It is further consistent with degradation experiments of fresh phytoplankton. We propose that an important yet mostly overlooked consideration in previous upscaling approaches is the proportion of the relative reactive POC classes reaching the seafloor in addition to their reactivity. The approach presented is applicable to both steady-state and non-steady state scenarios, and links POC degradation kinetics in sedimentary environments to water depth and the POC rain rate to the seafloor.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Description: The kinetics of particulate organic carbon (POC) mineralization in marine surface sediments is not well constrained. This creates considerable uncertainties when benthic processes are considered in global biogeochemical or Earth system circulation models to simulate climate–ocean interactions and biogeochemical tracer distributions in the ocean. In an attempt to improve our understanding of the rate and depth distribution of organic carbon mineralization in bioturbated (0–20 cm) sediments at the global scale, we parameterized a 1-D diagenetic model that simulates the mineralization of three discrete POC pools (a multi-G model). The rate constants of the three reactive classes (highly reactive, reactive, refractory) are fixed and determined to be 70, 0.5 and ∼ 0.001 yr−1, respectively, based on the Martin curve model for pelagic POC degradation. In contrast to previous approaches, however, the reactivity of the organic material degraded in the seafloor is continuous with, and set by, the apparent reactivity of material sinking through the water column. Despite the simplifications of describing POC remineralization using G-type approaches, the model is able to simulate a global database (185 stations) of benthic oxygen and nitrate fluxes across the sediment–water interface in addition to porewater oxygen and nitrate distributions and organic carbon burial efficiencies. It is further consistent with degradation experiments using fresh phytoplankton reported in a previous study. We propose that an important yet mostly overlooked consideration in upscaling approaches is the proportion of the reactive POC classes reaching the seafloor in addition to their reactivity. The approach presented is applicable to both steady-state and non-steady state scenarios, and links POC degradation kinetics in sedimentary environments to water depth and the POC rain rate to the seafloor.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-06
    Description: Previous studies have suggested that enhanced weathering and benthic phosphorus (P) fluxes, triggered by climate warming, can increase the oceanic P inventory on millennial timescales, promoting ocean productivity and deoxygenation. In this study, we assessed the major uncertainties in projected P inventories and their imprint on ocean deoxygenation using an Earth system model of intermediate complexity for the same business-as-usual carbon dioxide (CO2) emission scenario until the year 2300 and subsequent linear decline to zero emissions until the year 3000. Our set of model experiments under the same climate scenarios but differing in their biogeochemical P parameterizations suggest a large spread in the simulated oceanic P inventory due to uncertainties in (1) assumptions for weathering parameters, (2) the representation of bathymetry on slopes and shelves in the model bathymetry, (3) the parametrization of benthic P fluxes and (4) the representation of sediment P inventories. Considering the weathering parameters closest to the present day, a limited P reservoir and prescribed anthropogenic P fluxes, we find a +30 % increase in the total global ocean P inventory by the year 5000 relative to pre-industrial levels, caused by global warming. Weathering, benthic and anthropogenic fluxes of P contributed +25 %, +3 % and +2 %, respectively. The total range of oceanic P inventory changes across all model simulations varied between +2 % and +60 %. Suboxic volumes were up to 5 times larger than in a model simulation with a constant oceanic P inventory. Considerably large amounts of the additional P left the ocean surface unused by phytoplankton via physical transport processes as preformed P. In the model, nitrogen fixation was not able to adjust the oceanic nitrogen inventory to the increasing P levels or to compensate for the nitrogen loss due to increased denitrification. This is because low temperatures and iron limitation inhibited the uptake of the extra P and growth by nitrogen fixers in polar and lower-latitude regions. We suggest that uncertainties in P weathering, nitrogen fixation and benthic P feedbacks need to be reduced to achieve more reliable projections of oceanic deoxygenation on millennial timescales.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-04
    Description: Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m−2 d−1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively high.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-02
    Description: Previous studies have suggested that weathering and benthic phosphorus (P) fluxes, triggered by climate warming, can increase the oceanic P inventory on millennial time scales, promoting ocean productivity and deoxygenation. In this study, we assessed the major uncertainties in projected P inventories and their imprint on ocean deoxygenation using an Earth system model of intermediate complexity for a business-as-usual carbon dioxide (CO2) emission scenario until year 2300 and subsequent linear decline to zero emissions until year 3000. Model results suggest a large spread in the simulated oceanic P inventory due to uncertainties in (1) assumptions for weathering parameters, (2) the representation of bathymetry on slopes and shelves in the model bathymetry, (3) the parametrization of benthic P fluxes and (4) the representation of sediment P inventories. Our best estimate for changes in the global ocean P inventory by the year 5000 caused by global warming amounts to +30 % compared to pre-industrial levels. Weathering, benthic and anthropogenic fluxes of P contributed +25 %, +3 % and +2 % respectively. The total range of oceanic P inventory changes across all model simulations varied between +2 % and +60 %. Suboxic volumes were up to 5 times larger than in a model simulation with a constant oceanic P inventory. Considerably large amounts of the additional P left the ocean surface unused by phytoplankton via physical transport processes as preformed P. Nitrogen fixation was not able to adjust the oceanic nitrogen inventory to the increasing P levels or to compensate for the nitrogen loss due to increased denitrification. This is in contrast to palaeo reconstructions of large-scale deoxygenation events. We suggest that uncertainties in P weathering, nitrogen fixation and benthic P feedbacks need to be reduced to achieve more reliable projections of oceanic deoxygenation on millennial timescales.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-06
    Description: The upwelling area in the eastern equatorial Pacific off Peru is one of the most pronounced oxygen minimum zones (OMZs) of the modern ocean. Modeling scenarios predict an expansion of the OMZs in the course of global change in the coming decades. As a consequence, the Peruvian continental margin represents a key locality for studies on biogeochemical dynamics in the future ocean. We present pore water and sediment data for redox-sensitive metals (Fe, Mn, V, Mo, and U) that have been collected along a transect across the Peruvian margin at 11°S. The results are used to evaluate the behavior of trace metals in a wide range of biogeochemical and hydrodynamic settings. In the core of the OMZ, where permanently anoxic conditions prevail, redox sensitive metals exhibit diagenetic behaviors largely consistent with previous studies. Vanadium and Mo are released from Fe oxihydroxides and subsequently recycled through diffusion across the benthic boundary or trapped through formation of authigenic V phases and sequestration of Mo by authigenic pyrite. Some U is delivered through diffusion across the benthic boundary, reduction and precipitation of UO2 and incorporation into phosphorites. The utmost part of the buried U, however, is delivered in particulate form, most likely as bioauthigenic U which cannot be recycled in the suboxic waters overlying the anoxic sediments. In contrast to sediments in the core of the OMZ, sediments on the shelf experience frequent oxygenation episodes related to the passage of internal waves and the regular recurrence of El Niño events. These oxygenation episodes lead to the re-oxidation and remobilization of authigenic U and V. In contrast to that, the authigenic accumulation of Mo is favored by the occasional occurrence of slightly oxidizing conditions. This is most likely due to enhanced formation of sulfur intermediates necessary for pyrite formation and the increased stability of pyrite, the major Mo sink, under oxidizing conditions, compared to authigenic V and U phases. Redox oscillations in the Peruvian OMZ thus lead to a discrimination of U against Mo, a mechanism that should be considered in the interpretation of U/Mo systematics in paleo redox studies. Overall our results provide valuable constraints on how trace metal inventories of marginal sediments may respond to expanding shelf anoxia and to short term perturbations of sediment redox conditions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Ammonium; Auto-analyzer; Calculated; Chlorine and Bromine; DEPTH, sediment/rock; GE99/KOMEX_VI; GE99-6-3; Hydrogen sulfide; KOMEX; Kurile-Okhotsk Sea Marine Experiment; Marshal Gelovany; MIC; MiniCorer; Nitrate and Nitrite; Nitrite; pH; Phosphate; Photometry; Potentiometric; Silicate; Temperature, water; Titration; West Kurile basin
    Type: Dataset
    Format: text/tab-separated-values, 133 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...