ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (7)
  • Heidelberg: Springer
  • PANGAEA
  • Ramat-Gan: Bar-Ilan University, Department of Economics
  • 2010-2014  (12)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2023-01-13
    Keywords: Alaska, USA; Deadhorse; ENV; Environmental investigation; Event label; Franklin_Bluffs; Green_Cabin; Happy_Valley; Howe_Island; Isachsen2; Latitude of event; Longitude of event; Mould_Bay2; Queen Elizabeth Islands, Canada NWT; Sagwon; Sample code/label; Vegetation biomass; West_Dock
    Type: Dataset
    Format: text/tab-separated-values, 3555 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-01
    Keywords: Abietinella abietina; Agonimia gelatinosa; Alaska, USA; Alectoria nigricans; Alectoria ochroleuca; Allocetraria madreporiformis; Aloina brevirostris; Alopecurus alpinus; Amblystegium longicuspus; Amblystegium serpens; Anaptychia bryorum; Anastrophyllum minutum; Andromeda polifolia; Androsace chamaejasme; Aneura pinguis; Antennaria friesiana; Antennaria sp.; Anthelia juratzkana; Arctagrostis latifolia; Arctoa anderssonii; Arctocetraria nigricascens; Arctomia delicatula; Arctostaphylos alpina; Arctous rubra; Arnellia fennica; Artemisia borealis; Arthrorhaphis vacillans; Asahinea chrysantha; Astragalus alpinus; Astragalus richardsonii; Astragalus umbellatus; Aulacomnium acuminatum; Aulacomnium palustre; Aulacomnium turgidum; Baeomyces carneus; Baeomyces rufus; Barbilophozia barbata; Barbilophozia binsteadii; Barbilophozia hyperborea; Barbilophozia kunzeana; Barbula unguiculata; Bare ground; Bartramia ithyphylla; Betula nana; Biatora subduplex; Biatora vernalis; Biatorella conspersa; Bistorta vivipara; Blepharostoma trichophyllum; Brachythecium mildeanum; Brachythecium turgidum; Braya glabella var. glabella; Braya glabella var. purpurascens; Braya humilis; Bryocaulon divergens; Bryodina rhypariza; Bryoerythrophyllum recurvirostre; Bryonora castanea; Bryum arcticum; Bryum argenteum; Bryum caespiticium; Bryum pseudotriquetrum; Bryum rutilans; Bryum sp.; Bryum subneodamense; Bryum teres; Bryum wrightii; Bucegia romanica; Calamagrostis canadensis; Calamagrostis sp.; Callialaria curvicaule; Calliergon giganteum; Calliergon sp.; Caloplaca ammiospila; Caloplaca cerina; Caloplaca phaeocarpella; Caloplaca sp.; Caloplaca tetraspora; Caloplaca tiroliensis; Caloplaca tornoensis; Caloplaca xanthostigmoidea; Calypogeja muelleriana; Calypogeja sphagnicola; Campylium arcticum; Campylium chrysophyllum; Campylium longicuspus; Campylium polygamum; Campylium stellatum; Candelariella placodizans; Candelariella sp.; Candelariella terrigena; Cardamine bellidifolia; Cardamine digitata; Carex aquatilis; Carex atrofusca; Carex bigelowii; Carex capillaris; Carex fuliginosa var. misandra; Carex heleonastes; Carex membranacea; Carex microchaeta; Carex rariflora; Carex rotundata; Carex rupestris; Carex scirpoidea; Carex sp.; Carex vaginata var. quasivaginata; Cassiope tetragona; Catapyrenium cinereum; Catapyrenium sp.; Catoscopium nigritum; Cephalozia bicuspidata; Cephalozia pleniceps; Cephaloziella arctogena; Cephaloziella grimsulana; Cephaloziella varians; Cerastium arcticum; Cerastium beeringianum; Ceratodon heterophyllus; Ceratodon purpureus; Cetraria aculeata; Cetraria inermis; Cetraria islandica; Cetraria laevigata; Cinclidium arcticum; Cinclidium latifolium; Cirriphyllum cirrosum; Cladina arbuscula; Cladina mitis; Cladina rangiferina; Cladina stygia; Cladonia alaskana; Cladonia amaurocraea; Cladonia cenotea; Cladonia chlorophaea; Cladonia coccifera; Cladonia cornuta; Cladonia cyanipes; Cladonia deformis; Cladonia fimbriata; Cladonia gracilis; Cladonia gracilis var. elongata; Cladonia macroceras; Cladonia pleurota; Cladonia pocillum; Cladonia pyxidata; Cladonia scabriuscula; Cladonia sp.; Cladonia squamosa; Cladonia subfurcata; Cladonia sulphurina; Cladonia trassii; Cladonia uncialis; Cochlearia groenlandica; Collema ceraniscum; Collema sp.; Collema tenax; Collema undulatum; Conostomum tetragonum; Cratoneuron sp.; Ctenidium molluscum; Ctenidium procerrimum; Cyrtomnium hymenophylloides; Dactylina arctica; Dactylina beringica; Dactylina ramulosa; Deadhorse; Dicranum acutifolium; Dicranum angustum; Dicranum bonjeanii; Dicranum elongatum; Dicranum fragilifolium; Dicranum groenlandicum; Dicranum sp.; Dicranum spadiceum; Dicranum undulatum; Didymodon asperifolius; Didymodon rigidulus; Didymodon rigidulus var. icmadophilus; Didymodon sp.; Didymodon spadiceus; Distichium capillaceum; Distichium inclinatum; Ditrichum flexicaule; Draba alpina; Draba cinerea; Draba nivalis; Draba oblongata; Draba sp.; Draba subcapitata; Drepanocladus aduncus; Drepanocladus brevifolius; Drepanocladus sendtneri; Drepanocladus sp.; Dryas integrifolia; Elymus alaskanus var. alaskanus; Elymus alaskanus var. hyperarcticus; Empetrum nigrum; Encalypta alpina; Encalypta longicolla; Encalypta procera; Encalypta rhaptocarpa; Encalypta sp.; Encalypta vulgaris; Endocarpon pusillum; Entodon concinnus; ENV; Environmental investigation; Epilobium sp.; Equisetum arvense; Equisetum variegatum; Eriophorum angustifolium var. triste; Eriophorum vaginatum; Eurhynchium pulchellum; Event label; Evernia perfragilis; Festuca baffinensis; Festuca brachyphylla; Festuca hyperborea; Fissidens arcticus; Fissidens bryoides; Flavocetraria cucullata; Flavocetraria nivalis; Franklin_Bluffs; Fulgensia bracteata; Fuscopannaria praetermissa; Green_Cabin; Grimmia sp.; Gymnomitrion concinnatum; Gymnomitrion corallioides; Happy_Valley; Hedysarum alpinum; Hennediella heimii; Hennediella heimii var. arctica; Howe_Island; Hulteniella integrifolium; Hylocomium splendens; Hymenostylium recurvirostre; Hypnum bambergeri; Hypnum cupressiforme; Hypnum holmenii; Hypnum revolutum; Hypnum sp.; Hypnum subimponens; Hypnum vaucheri; Hypogymnia subobscura; Isachsen2; Isopterygiopsis pulchella; Japewia tornoensis; Juncus biglumis; Juncus castaneus; Juncus triglumis; Jungermannia polaris; Kiaeria cf. blyttii; Kobresia myosuroides; Lagotis glauca; Latitude of event; Lecanora epibryon; Lecanora geophila; Lecanora luteovernalis; Lecidea ramulosa; Lecidella wulfenii; Leiocolea collaris; Lepraria cf. vouauxii; Lepraria neglecta; Lepraria sp.; Leptobryum pyriforme; Leptogium gelatinosum; Leptogium lichenoides; Leptogium sp.; Limprichtia revolvens; Lloydia serotina; Longitude of event; Lopadium pezizoideum; Lophozia badensis; Lophozia collaris; Lophozia excisa; Lophozia jurensis; Lophozia longiflora; Lophozia polaris; Lophozia savicziae; Lophozia silvicola; Lophozia sp.; Lophozia ventricosa; Lophozia wenzelii; Lupinus arcticus; Luzula confusa; Luzula nivalis; Masonhalea richardsonii; Meesia longiseta; Meesia triquetra; Meesia uliginosa; Megalaria jemtlandica; Megaspora verrucosa; Micarea incrassata; Minuartia arctica; Minuartia rossii; Minuartia rubella; Mnium marginatum; Mnium thomsonii; Mould_Bay2; Mycoblastus sanguinarius; Myurella julacea; Myurella tenerrima; Nephroma arcticum; Nephroma expallidum; Nostoc commune; Ochrolechia androgyna; Ochrolechia cf. inaequatula; Ochrolechia frigida; Ochrolechia inaequatula; Ochrolechia sp.; Ochrolechia upsaliensis; Odontoshisma macounii; Orthilia secunda; Orthothecium chryseum; Orthothecium strictum; Orthothecium varia; Orthotrichum speciosum; Oxyria digyna; Oxytropis arctica; Oxytropis arctobia; Oxytropis borealis; Oxytropis maydelliana; Oxytropis sp.; Packera heterophylla; Papaver macounii; Papaver radicatum; Papaver sp.; Parmelia omphalodes var. glacialis; Parrya arctica; Parrya nudicaulis; Pedicularis albolabiata; Pedicularis arctoeuropaea; Pedicularis capitata; Pedicularis labradorica; Pedicularis lanata; Pedicularis langsdorfii; Pedicularis lapponica; Pedicularis oederi; Pedicularis sudetica; Pellia endivifolia; Peltigera aphthosa; Peltigera canina; Peltigera didactyla; Peltigera frippii; Peltigera leucophlebia; Peltigera malacea; Peltigera neopolydactyla; Peltigera polydactylon; Peltigera rufescens; Peltigera scabrosa; Peltigera sp.; Peltigera venosa; Pertusaria atra; Pertusaria bryontha; Pertusaria dactylina; Pertusaria glomerata; Pertusaria octomela; Pertusaria panyrga; Petasites frigidus; Phaeorrhiza nimbosa; Philonotis tomentella; Physconia muscigena; Placopsis gelida; Placynthium nigrum; Plagiochila asplenioides; Pleurozium schreberi; Poa abbreviata; Poa alpigena; Poa arctica var. lanata; Poa sp.; Pogonatum urnigerum; Pohlia beringiensis; Pohlia cruda; Pohlia drummondii; Pohlia nutans; Pohlia sp.; Polyblastia bryophila; Polyblastia sendtneri; Polyblastia terrestris; Polychidium muscicola; Polytrichastrum alpinum; Polytrichastrum alpinum var. alpinum; Polytrichum hyperboreum; Polytrichum piliferum; Polytrichum sp.;
    Type: Dataset
    Format: text/tab-separated-values, 70093 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-10
    Keywords: -; Active layer depth; Alaska, USA; Bare ground; Blue-green algae; Carbon/Nitrogen ratio; Deadhorse; Density; ENV; Environmental investigation; Equisetum; Event label; Forbs; Franklin_Bluffs; Grass, cover; Green_Cabin; Happy_Valley; HEIGHT above ground; Horizon; Howe_Island; Index; Isachsen2; Latitude 2; Lichen; Marchantiophyta; Moss; Mould_Bay2; Normalized Difference Vegetation Index; pH; Plant community; Queen Elizabeth Islands, Canada NWT; Sagwon; Sample code/label; Sand; Shrubs; Silt; Size fraction 〈 0.002 mm, clay; Snow thickness; Soil moisture; Vegetation, cover; Vegetation biomass; Zone, biogeographic
    Type: Dataset
    Format: text/tab-separated-values, 9758 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E (2012): Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 7(1), 12 pp, https://doi.org/10.1088/1748-9326/7/1/015506
    Publication Date: 2023-12-13
    Description: Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Walker, Donald A; Kuss, Patrick; Epstein, Howard E; Kade, Anja N; Vonlanthen, Corinne M; Raynolds, Martha K; Daniëls, Frederikus J A (2011): Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Applied Vegetation Science, 14(4), 440-463, https://doi.org/10.1111/j.1654-109X.2011.01149.x
    Publication Date: 2023-12-13
    Description: Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-12
    Description: Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. For example, we find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-04-07
    Description: We develop the thermodynamic underpinnings of a two-dimensional volatility basis set (2D-VBS) employing saturation mass concentration (Co) and the oxygen content (O:C) to describe volatility, mixing thermodynamics, and chemical evolution of organic aerosol. The work addresses a simple question: "Can we reasonably constrain organic-aerosol composition in the atmosphere based on only two measurable organic properties, volatility and the extent of oxygenation?" This is an extension of our earlier one-dimensional approach employing volatility only (C* = γ Co, where γ is an activity coefficient). Using available constraints on bulk organic-aerosol composition, we argue that one can reasonably predict the composition of organics (carbon, oxygen and hydrogen numbers) given a location in the Co – O:C space. Further, we argue that we can constrain the activity coefficients at various locations in this space based on the O:C of the organic aerosol.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-26
    Description: Gas-phase photolysis is an important tropospheric sink for many carbonyl compounds; however the significance of direct photolysis of these compounds dissolved in cloud and fog droplets is uncertain. We develop a theoretical approach to assess the importance of aqueous photolysis for a series of carbonyls that possess carboxyl and hydroxyl functional groups by comparison with rates of other atmospheric processes. We use computationally and experimentally derived effective Henry's law constants, hydration equilibrium parameters, aqueous hydroxyl radical (OH) rate constants, and optical extinction coefficients to identify types of compounds that will (or will not) have competitive aqueous photolysis rates. We also present molecular dynamics simulations designed to estimate gas- and aqueous-phase extinction coefficients of unstudied atmospherically relevant compounds found in d-limonene and isoprene secondary organic aerosol. In addition, experiments designed to measure the photolysis rate of glyceraldehyde, an atmospherically relevant water-soluble organic compound, reveal that aqueous quantum yields are highly molecule-specific and cannot be extrapolated from measurements of structurally similar compounds. We find that only two out of the 92 carbonyl compounds investigated, pyruvic acid and acetoacetic acid, may have aqueous photolysis rates that exceed the rate of oxidation by dissolved OH. For almost all carbonyl compounds lacking α,β-conjugation that were investigated, atmospheric removal by direct photolysis in cloud and fog droplets can be neglected under typical atmospheric conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-19
    Description: Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. We find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-18
    Description: In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL) we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation (2010 – 1042 mm; 2011 – 1739 mm; 2012 – 1244 mm; precipitation data from BDKW2 station, MesoWest, University of Utah). An apparent soil temperature threshold of 11 °C at 12 cm depth on FSOIL was observed in our data – where FSOIL rates greatly increase in variance above this threshold. For analysis, FSOIL values above this threshold were isolated and examined. Differences in FSOIL among years were apparent by elevation (F4,633 = 3.17; p = 0.013) and by vegetation cover (F4, 633 = 2.96; p = 0.019). For the Weimer Run watershed, vegetation exerts the major control on soil CO2 efflux (FSOIL), with the plots beneath shrubs at all elevations for all years showing the greatest mean rates of FSOIL (6.07 μmol CO2 m-2 s-1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m-2 s-1) and plots located in open, forest gaps (4.09 μmol CO2 m-2 s-1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained and that maximum efflux rates in this system occur during periods of average to below average soil water availability. These findings offer valuable insight into the processes occurring within these topographically complex, temperate and humid systems, and the interactions of abiotic and biotic factors mediating biogeochemical cycles. With possible changing rainfall patterns as predicted by climate models, it is important to understand the couplings between water and carbon cycling at the watershed and landscape scales, and their potential dynamics under global change scenarios.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...