ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-06
    Description: A high-quality dataset of surface water fugacity of CO2 (fCO2w)1, consisting of over a million observations, and derived products are presented for the northern Caribbean Sea, covering the time span from 2002 through 2018. Prior to installation of automated pCO2 systems on cruise ships of Royal Caribbean International and subsidiaries, very limited surface water carbon data were available in this region. With this observational program, the northern Caribbean Sea has now become one of the best-sampled regions for pCO2 of the world ocean. The dataset and derived quantities are binned and averaged on a 1∘ monthly grid and are available at http://accession.nodc.noaa.gov/0207749 (last access: 30 June 2020) (https://doi.org/10.25921/2swk-9w56; Wanninkhof et al., 2019a). The derived quantities include total alkalinity (TA), acidity (pH), aragonite saturation state (ΩAr) and air–sea CO2 flux and cover the region from 15 to 28∘ N and 88 to 62∘ W. The gridded data and products are used for determination of status and trends of ocean acidification, for quantifying air–sea CO2 fluxes and for ground-truthing models. Methodologies to derive the TA, pH and ΩAr and to calculate the fluxes from fCO2w temperature and salinity are described.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-31
    Description: We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll-a concentration (Chl-a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. The overall relationship between pCO2w and Chl-a is negative in most regions when Chl-a ≤ 1 mg m−3, whereas there is no significant relationship when Chl-a 〉 1 mg m−3. In the Kara Sea and the East Siberian Sea and the Bering Strait, however, the relationship is typically positive in summer. The addition of Chl-a as a parameter in the SOM process enabled us to improve the estimate of pCO2w via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. Mainly as a result of the inclusion of Chl-a, the uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 TgC y−1 was determined to be significant.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-25
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "Living Data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-15
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-25
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017, while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments. The original data, their documentation and DOI codes are available in the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/, last access: 17 September 2019). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/xnme-wr20 (Olsen et al., 2019). The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2.2019 methods and provides a broad overview of the secondary quality control procedures and results.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-30
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon 40 chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017 while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have been subjected to extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better that 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg−1 in dissolved inorganic carbon, 4 μmol kg−1 in total alkalinity, 0.01 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments. The original data, their documentation and doi codes are available at the Ocean Carbon Data System of NOAA/NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/). This site also provides access to the merged data product, which is provided as a single global file or as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under the doi: https://doi.org/10.25921/xnme-wr20 (Olsen et al., 2019). The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2.2019 methods and provides a broad overview of the secondary quality control results.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-22
    Description: We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60∘ N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr−1. Seasonal to interannual variation in the CO2 influx was also calculated.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-03-31
    Description: Uncertainties in carbon chemistry variability still remain large in the Gulf of Mexico (GoM), as data gaps limit our ability to infer basin-wide patterns. Here we configure and validate a regional high-resolution ocean biogeochemical model for the GoM to describe seasonal patterns in surface pressure of CO2 (pCO2), aragonite saturation state (ΩAr), and sea–air CO2 flux. Model results indicate that seasonal changes in surface pCO2 are strongly controlled by temperature across most of the GoM basin, except in the vicinity of the Mississippi–Atchafalaya river system delta, where runoff largely controls dissolved inorganic carbon (DIC) and total alkalinity (TA) changes. Our model results also show that seasonal patterns of surface ΩAr are driven by seasonal changes in DIC and TA, and reinforced by the seasonal changes in temperature. Simulated sea–air CO2 fluxes are consistent with previous observation-based estimates that show CO2 uptake during winter–spring, and CO2 outgassing during summer–fall. Annually, our model indicates a basin-wide mean CO2 uptake of 0.35 molm-2yr-1, and a northern GoM shelf (
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-11
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-23
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are data from 106 new cruises added, extension of time coverage to 2019, and the inclusion of available (also for historical cruises) discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product using crossover analysis. Comparisons to empirical algorithm estimates provided additional context for adjustment decisions; this is new to this version. The adjustments are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2, were not subjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, last access: 20 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). These bias-adjusted product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...