ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • American Meteorological Society (AMS)
  • 1
    Publication Date: 2017-01-13
    Description: A new long-term data record of Fram Strait sea ice area export from 1935 to 2014 is developed using a combination of satellite radar images and station observations of surface pressure across Fram Strait. This data record shows that the long-term annual mean export is about 880 000 km2, representing 10 % of the sea-ice-covered area inside the basin. The time series has large interannual and multi-decadal variability but no long-term trend. However, during the last decades, the amount of ice exported has increased, with several years having annual ice exports that exceeded 1 million km2. This increase is a result of faster southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Evaluating the trend onwards from 1979 reveals an increase in annual ice export of about +6 % per decade, with spring and summer showing larger changes in ice export (+11 % per decade) compared to autumn and winter (+2.6 % per decade). Increased ice export during winter will generally result in new ice growth and contributes to thinning inside the Arctic Basin. Increased ice export during summer or spring will, in contrast, contribute directly to open water further north and a reduced summer sea ice extent through the ice–albedo feedback. Relatively low spring and summer export from 1950 to 1970 is thus consistent with a higher mid-September sea ice extent for these years. Our results are not sensitive to long-term change in Fram Strait sea ice concentration. We find a general moderate influence between export anomalies and the following September sea ice extent, explaining 18 % of the variance between 1935 and 2014, but with higher values since 2004.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-10
    Description: The Nioghalvfjerdsbræ (79NG) is a floating ice tongue on Northeast Greenland draining a large part of the Greenland Ice Sheet. A CTD profile from a rift on the ice tongue close to the northern front shows that Atlantic Water (AW) is present in the cavity below, with maximum temperature of approximately 1 °C at 610 m depth. The AW present in the cavity thus has the potential to drive submarine melting along the ice base. Here, we simulate melt rates from the 79NG with a 1D numerical Ice Shelf Water (ISW) plume model. A meltwater plume is initiated at the grounding line depth (600 m) and rises along the ice base as a result of buoyancy contrast to the underlying AW. Ice melts as the plume entrains the warm AW. Maximum simulated melt rates are 50–76 m yr−1 within 10 km of the grounding line. Within a zone of rapid decay between 10 km and 20 km melt rates drop to roughly 6 m yr−1. Further downstream, melt rates are between 15 m yr−1 and 6 m yr−1. The melt-rate sensitivity to variations in AW temperatures is assessed by forcing the model with AW temperatures between 0.1–1.4 °C, as identified from the ECCOv4 ocean state estimate. The melt rates increase linearly with rising AW temperature, ranging from 10 m yr−1 to 21 m yr−1 along the centerline. The corresponding freshwater flux ranges between 11 km3 yr−1 (0.4 mSv) and 30 km3 yr−1 (1.0 mSv), which is 5 % and 12 % of the total freshwater flux from the Greenland Ice Sheet since 1995, respectively. Our results improve the understanding of processes driving submarine melting of marine-terminating glaciers around Greenland, and its sensitivity to changing ocean conditions.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...