ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • Copernicus  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2009-12-01
    Description: In this study, the role of the Saharan air layer (SAL) is investigated in the development and intensification of tropical cyclones (TCs) via modifying environmental stability and moisture, using multisensor satellite data, long-term TC track and intensity records, dust data, and numerical simulations with a state-of-the-art Weather Research and Forecasting model (WRF). The long-term relationship between dust and Atlantic TC activity shows that dust aerosols are negatively associated with hurricane activity in the Atlantic basin, especially with the major hurricanes in the western Atlantic region. Numerical simulations with the WRF for specific cases during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) experiment show that, when vertical temperature and humidity profiles from the Atmospheric Infrared Sounder (AIRS) were assimilated into the model, detailed features of the warm and dry SAL, including the entrainment of dry air wrapping around the developing vortex, are well simulated. Active tropical disturbances are found along the southern edge of the SAL. The simulations show an example where the dry and warm air of the SAL intruded into the core of a developing cyclone, suppressing convection and causing a spin down of the vortical circulation. The cyclone eventually weakened. To separate the contributions from the warm temperature and dry air associated with the SAL, two additional simulations were performed, one assimilating only AIRS temperature information (AIRST) and one assimilating only AIRS humidity information (AIRSH) while keeping all other conditions the same. The AIRST experiments show almost the same simulations as the full AIRS assimilation experiments, whereas the AIRSH is close to the non-AIRS simulation. This is likely due to the thermal structure of the SAL leading to low-level temperature inversion and increased stability and vertical wind shear. These analyses suggest that dry air entrainment and the enhanced vertical wind shear may play the direct roles in leading to the TC suppression. On the other hand, the warm SAL temperature may play the indirect effects by enhancing vertical wind shear; increasing evaporative cooling; and initiating mesoscale downdrafts, which bring dry air from the upper troposphere to the lower levels.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-12-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-23
    Description: Version-4 of the Goddard Earth Observing System (GEOS-4) General Circulation Model (GCM) was employed to assess the influence of potential changes in aerosols on the regional circulation, ambient temperatures, and precipitation in four selected regions: India and Africa (current paper), as well as North and South America (companion paper). Ensemble-simulations were carried out with the GCM to assess the aerosol direct and indirect effects, hereafter ADE and AIE. Each simulation was started from the NCEP-analyzed initial conditions for 1 May and was integrated through May-June-July-August of each year: 1982–1987 to provide an ensemble set of six simulations. In the first set, called experiment (#1), climatological aerosols were prescribed. The next two experiments (#2 and #3) had two sets of simulations each: one with 2X and other with 1/2X the climatological aerosols over each of the four selected regions. In experiment #2, the anomaly regions were advectively restricted (AR), i.e., the large-scale prognostic fields outside the aerosol anomaly regions were prescribed while in experiment #3, the anomaly regions were advectively Interactive (AI) as is the case in a normal GCM integrations, but with the same aerosols anomalies as in experiment #2. Intercomparisons of circulation, diabatic heating, and precipitation difference fields showed large disparities among the AR and AI simulations, which raised serious questions about the proverbial AR assumption, commonly invoked in regional climate simulation studies. Consequently AI simulation mode was chosen for the subsequent studies. Two more experiments (#4 and #5) were performed in the AI mode in which ADE and AIE were activated one at a time. The results showed that ADE and AIE work in concert to make the joint influences larger than sum of each acting alone. Moreover, the ADE and AIE influences were vastly different for the Indian and Africa regions, which suggest an imperative need to include them rationally in climate models. We also found that the aerosol induced increase of tropical cirrus clouds would potentially offset any cirrus thinning that may occur due to warming in response to CO2 increase.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...