ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus  (8)
  • American Geophysical Union  (1)
  • 1
    Publikationsdatum: 1999-09-01
    Print ISSN: 0148-0227
    Digitale ISSN: 2156-2202
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-09-21
    Beschreibung: The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. Thus, there is uncertainty about its exact nature. That confusion can be avoided if terms are defined and widely understood. Here we discuss an ambiguity between BC and soot and propose a more precise definition for soot as a specific material, which we call ns-soot, where "ns" refers to carbon nanospheres. We define ns-soot as particles that consist of nanospheres, typically with diameters 〈 100 nm, that possess distinct structures of concentrically wrapped, graphene-like layers of carbon and with grape-like (acinoform) morphologies. We additionally propose that, because of their importance for climate modeling and health issues, distinctions are made among bare, coated, and embedded ns-soot. BC, on the other hand, is not a well-defined material. We propose that the term should be restricted to light-absorbing refractory carbonaceous matter of uncertain character and that the uncertainty is stated explicitly.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-12-18
    Beschreibung: Atmospheric tar balls are particles of special morphology and composition that are abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and thus climate forcing. Formerly tar balls were hypothesized to be formed in secondary processes in the atmosphere from lignin pyrolysis products. Based on their typical size distributions, morphology, chemical characteristics and other features we now suggest that tar balls are initially produced by the emission of primary tar droplets upon biomass burning. To verify our hypothesis tar balls were produced under laboratory conditions with the total exclusion of flame processes. An all-glass apparatus was designed and tar ball particles were generated from liquid tar obtained previously by dry distillation of wood. The size range, morphology and the chemical composition of the laboratory-generated tar ball particles were similar to those observed in biomass smoke plumes or elsewhere in the atmosphere. Based on our results and the chemical and physical characteristics of tar we suggest that tar balls can be formed by the chemical transformation of emitted primary tar droplets.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2016-06-22
    Beschreibung: Black carbon aerosols have been conventionally assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that contrary to the conventional belief tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure aerosol absorption in the field. We find that the absorption coefficient of tar balls at 880 nm exceeds 10 % of that at 470 nm. This substantial absorption of red and infrared light is also evident from a relatively low Ångström coefficient (and a significant mass absorption coefficient) of tar balls between 470 and 950 nm. Retrievals of aerosol column optical properties from a global network of surface stations over vast tropical areas dominated by biomass burning suggest that tar balls are the predominant light-absorbing species of organic aerosols over acetone/methanol-soluble BrC or HULIS. Our results also infer that the role of BC (including Diesel soot) in global climate forcing has likely been overestimated at the expense of brown carbon (BrC) from biomass burning.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-06-16
    Beschreibung: Tar balls (TBs) are a specific particle type which is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC) which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g. organic particles with inorganic inclusions and soot, the latter is emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study we have installed on-line instruments to our laboratory set-up generating pure TB particles to measure the absorption and scattering, as well as size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory generated TBs were found to be in the range of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467–652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84–0.21i at 550 nm. In the brown carbon continuum these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have substantial influence on the understanding of global radiative energy fluxes.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2008-04-08
    Beschreibung: The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.
    Print ISSN: 1810-6277
    Digitale ISSN: 1810-6285
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2009-04-30
    Beschreibung: The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.
    Print ISSN: 1726-4170
    Digitale ISSN: 1726-4189
    Thema: Biologie , Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-07-02
    Beschreibung: Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in atmospheric chemistry we generated tar-ball particles from liquid tar obtained previously by dry distillation of wood in an all-glass apparatus in the laboratory with the total exclusion of flame processes. The particles were perfectly spherical with a mean optical diameter of 300 nm, refractory, externally mixed, and homogeneous in the contrast of the transmission electron microscopy (TEM) images. They lacked any graphene-like microstructure and exhibited a mean carbon-to-oxygen ratio of 10. All of the observed characteristics of laboratory-generated particles were very similar to those reported for atmospheric tar-ball particles in the literature, strongly supporting our hypothesis regarding the formation mechanism of atmospheric tar-ball particles.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2016-01-18
    Beschreibung: Tar balls (TBs) are a specific particle type that is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC), which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g., organic particles with inorganic inclusions and soot, the latter emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study, we have installed on-line instruments to our laboratory set-up, which generate pure TB particles to measure the absorption and scattering, as well as the size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory-generated TBs were found to be in the range of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467–652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84 − 0.21i at 550 nm. In the brown carbon continuum, these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have substantial influence on the understanding of global radiative energy fluxes.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...