ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus  (6)
  • American Association for the Advancement of Science  (2)
  • 1
    Publikationsdatum: 2012-09-24
    Beschreibung: Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr) and longer (~ 28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception.
    Print ISSN: 1814-9324
    Digitale ISSN: 1814-9332
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2006-09-07
    Beschreibung: Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.
    Print ISSN: 1814-9340
    Digitale ISSN: 1814-9359
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2008-11-24
    Beschreibung: Recently, an absolute "calibration" was proposed for the GRIP and GISP2 Greenland ice-core time scales (Shackleton et al., 2004). This calibration attempted to reconcile the stratigraphic integration of ice-core, marine and speleothem archives with the absolute age constraints that marine and speleothem records incorporate. Here we revisit this calibration in light of the new layer-counted chronology of the NGRIP ice-core (GICC05). The GICC05 age-scale differs from the proposed absolute calibration by up to 1200 years late in the last glaciation, with implications both for radiocarbon cycling and the inferred timing of North Atlantic climate events relative to radiometrically dated archives (e.g. relative sea-level). By aligning the stratigraphy of Iberian Margin marine cores with that of the Greenland ice-cores, it can be shown that either: 1) the radiocarbon content of mid-latitude Atlantic surface-waters was extremely depleted (resulting in average surface reservoir ages up to 1700 years prior to ~22 ka BP); or 2) the GICC05 age-scale includes too few years (is up to 1200 years too young). It is shown here that both of these possibilities are probably correct to some degree. Based on the assumed accuracy of coral and speleothem U-Th ages, Northeast Atlantic surface reservoir ages should be revised upward by ~350 years, while the NGRIP age-scale appears to be "missing" time. These findings illustrate the utility of integrated stratigraphy as a test for our chronologies, which are rarely truly "absolute". This is an important point, since probably the worst error that we can make is to entrench and generalise a precise stratigraphical relationship on the basis of erroneous absolute age assignations.
    Print ISSN: 1814-9324
    Digitale ISSN: 1814-9332
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2012-04-02
    Beschreibung: Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar-seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the peak in boreal summer insolation and is consistent with the canonical view of Milankovitch forcing dictating the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~13 kyr) and longer (~28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing an interglacial "relaxation" time over which gradual cooling takes place. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial iinception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception.
    Print ISSN: 1814-9340
    Digitale ISSN: 1814-9359
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2009-05-04
    Beschreibung: So far, the exploration of possible mechanisms for glacial atmospheric CO2 draw-down and marine carbon sequestration has focussed almost exclusively on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in setting the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the carbon storage capacity of the deep sea, which operates via an increase in the volume of relatively carbon-enriched AABW-like deep-water filling the ocean basins. Given the hypsometry of the ocean floor and an active biological pump, the water-mass that fills more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. A set of simple box-model experiments confirm the expectation that a deep sea dominated by AABW-like deep-water holds more CO2, prior to any additional changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" might be as large as the contributions that have been attributed to carbonate compensation, the thermodynamic solubility pump or the biological pump for example. If incorporated into the list of factors that have contributed to marine carbon sequestration during past glaciations, this standing volume mechanism may help to reduce the amount of glacial – interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.
    Print ISSN: 1814-9340
    Digitale ISSN: 1814-9359
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-08-14
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2010-05-28
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2009-09-30
    Beschreibung: So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW), filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps) might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.
    Print ISSN: 1814-9324
    Digitale ISSN: 1814-9332
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...