ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-11-30
    Description: Spacecraft-borne and ground-based magnetometers frequently detect magnetospheric micropulsations in the period range 0.2–10 s, termed Pc 1–2, and attributed to electromagnetic ion cyclotron waves driven by temperature anisotropy (T^ 〉 T ||). Previous surveys of Pc 1 occurrence locations have been limited to L 0.15) between L = 7–12, peaking at L = 8–10 (Pwav ~ 0.25). When the L-value is normalized to the magnetopause position Lmp, however, the highest probabilities of Pc 1 wave occurrence are close to the magnetopause, with Pwav ~0.25 for Lnorm = L/Lmp = 0.8–1.0. These results are consistent with increased convective growth rate at large L and with the greater effect of magnetosphere compression close to the magnetopause. On the other hand, we only directly observe magnetic field compression for at most about 25% of the wave events.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma waves and instabilities)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-11-30
    Description: Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-04-30
    Description: Observations made by the DMSP F10 satellite during the recovery phase from geomagnetic disturbances in June 1991 show regions of He+ dominance around 830 km altitude at 09:00 MLT. These regions are co-located with a trough in ionisation observed around 55° in the winter hemisphere. Plasma temperature and concentration observations made during the severe geomagnetic storm of 24 March 1991 are used as a case study to determine the effects of geomagnetic disturbances along the orbit of the F10 satellite. Previous explanations for He+ dominance in this trough region relate to the part of the respective flux tubes that is in darkness. Such conditions are not relevant for this study, since the whole of the respective flux tubes are sunlit. A new mechanism is proposed to explain the He+ dominance in the trough region. This mechanism is based on plasma transport and chemical reaction effects in the F-region and topside ionosphere, and on the time scales for such chemical reactions. Flux tubes previously depleted by geomagnetic storm effects refill during the recovery phase from the ionosphere as a result of pressure differences along the flux tubes. Following a geomagnetic disturbance, the He+ ion recovers quickly via the rapid photoionisation of neutral helium, in the F-region and the topside. The recovery of the O+ and H+ ions is less rapid. This is proposed as a result of the respective charge exchange reactions with neutral atomic hydrogen and oxygen. Preliminary model calculations support the proposed mechanism.Key words. Magnetospheric physics (storms and sub-storms, plasmasphere)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-01-01
    Description: A study of Pc-5 magnetic pulsations using data from the Combined Release and Radiation Effects Satellite (CRRES) was carried out. Three-component dynamic magnetic field spectrograms have been used to survey ULF pulsation activity for the approximate fourteen month lifetime of CRRES. Two-hour panels of dynamic spectra were examined to find events which fall into two basic categories: 1) toroidal modes (fundamental and harmonic resonances) and 2) poloidal modes, which include compressional oscillations. The occurence rates were determined as a function of L value and local time. The main result is a comparable probability of occurence of toroidal mode oscillations on the dawn and dusk sides of the magnetosphere inside geosynchronous orbit, while poloidal mode oscillations occur predominantly along the dusk side, consistent with high azimuthal mode number excitation by ring current ions. Pc-5 pulsations following Storm Sudden Commencements (SSCs) were examined separately. The spatial distribution of modes for the SSC events was consistent with the statistical study for the lifetime of CRRES. The toroidal fundamental (and harmonic) resonances are the dominant mode seen on the dawn-side of the magnetosphere following SSCs. Power is mixed in all three components. In the 21 dusk side SSC events there were only a few examples of purely compressional (two) or radial (one) power in the CRRES study, a few more examples of purely toroidal modes (six), with all three components predominant in about half (ten) of the events. Key words. Magnetospheric physics (MHD waves and instabilities; magnetospheric configuration and dynamics) – Space plasma physics (waves and instabilities)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...