ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
  • 2005-2009  (6)
  • 1990-1994
  • 1
    Publication Date: 2005-02-17
    Description: We summed estimates of the carbon balance of forests, grasslands, arable lands and peatlands to obtain country-specific estimates of the terrestrial carbon balance during the 1990s. Forests and grasslands were a net sink for carbon, whereas croplands were carbon sources in all European countries. Hence, countries dominated by arable lands tended to be losing carbon from their terrestrial ecosystems, whereas forest-dominated countries tended to be sequestering carbon. In some countries, draining and extraction of peatlands caused substantial reductions in the net carbon balance. Net terrestrial carbon balances were typically an order of magnitude smaller than the fossil fuel-related carbon emissions. Exceptions to this overall picture were countries where population density and industrialization are small. It is, however, of utmost importance to acknowledge that the typically small net carbon balance represents the small difference between two large but opposing fluxes: uptake by forests and grasslands and losses from arable lands and peatlands. This suggests that relatively small changes in either or both of these large component fluxes could induce large effects on the net total, indicating that mitigation schemes should not be discarded a priori. In the absence of carbon-oriented land management, the current net carbon uptake is bound to decline soon. Protecting it will require actions at three levels; a) maintaining the current sink activity of forests, b) altered agricultural management practices to reduce the emissions from arable soils or turn into carbon sinks and c) protecting current large reservoirs (wetlands and old forests), since carbon is lost more rapidly than sequestered.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-11
    Description: Knorr et al. (2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to temperature. We show that this conclusion is equivocal, largely dependent on their specific selection of data and does not persist when the data set of Kätterer et al. (1998) is analysed in a more appropriate way. Further, we analyse how statistical properties of the model parameters may interfere with correlative analyses that relate the Q10 of soil respiration with the basal rate, where the latter is taken as a proxy for soil organic matter quality. We demonstrate that negative parameter correlations between Q10-values and base respiration rates are statistically expected and not necessarily provide evidence for a higher temperature sensitivity of low quality soil organic matter. Consequently, we propose it is premature to conclude that stable soil carbon is more sensitive to temperature than labile carbon.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-03-29
    Description: This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity). However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-09-01
    Description: This is a summary of the Vernadsky medal lecture given at the Nice EGU meeting in 2004. The lecture reviews the past (since the International Biological Program) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary, ecosystem, and biome productivity. Consideration is given to the interactions between biodiversity and biogeochemical processes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-07-01
    Description: Knorr et al. (2005) concluded that soil organic carbon pools with longer turnover times are more sensitive to temperature. We show that this conclusion is equivocal, largely dependent on their specific selection of data and does not persist when the data set of Kätterer et al. (1998) is analysed in a more appropriate way. Further, we analyse how statistical properties of the model parameters may interfere with correlative analyses that relate the Q10 of soil respiration with the basal rate, where the latter is taken as a proxy for soil organic matter quality. We demonstrate that negative parameter correlations between Q10-values and base respiration rates are statistically expected and not necessarily provide evidence for a higher temperature sensitivity of low quality soil organic matter. Consequently, we reckon it is premature to conclude that stable soil carbon is more sensitive to temperature than labile carbon.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-11-26
    Description: Water-use efficiency (WUE) has been recognized as an important characteristic of vegetation productivity in various natural scientific disciplines for decades, but only recently at the ecosystem level, where different ways exist to characterize water-use efficiency. Hence, the objective of this research was (a) to systematically compare different ways of calculating ecosystem water-use efficiency (WUEe) from eddy-covariance measurements, (b) quantify the diurnal, seasonal and interannual variability of WUEe in relation to meteorological conditions, and (c) analyse between-site variability of WUEe as affected by vegetation type and climatic conditions, across sites in European forest ecosystems. Day-to-day variability of gross primary productivity (GPP) and evapotranspiration (ET) were more strongly coupled than net ecosystem production (NEP) and ET, obviously because NEP also depends on the respiration that is not heavily coupled to water fluxes. However, the slope of daytime NEP versus ET (mNEP) from half-hourly measurements of a single day may also be used as a WUEe-estimate giving very similar results to those of the GPP-ET slope (mGPP), since the diurnal variation is dominated by GPP. Since ET is the sum of transpiration (linked to GPP) and evaporation from wet vegetation and soil surfaces (not linked to GPP) we expected that WUEe is increasing when days after rain are excluded from the analysis. However only very minor changes were found, justifying an analysis of WUEe related to vegetation type. In most of the studied ecosystems the instantaneous WUEGPP was quite sensitive to diurnally varying meteorological conditions and tended to decline from the morning to the afternoon by more than 50% because of increasing vapour pressure deficits (VPD). Seasonally, WUEGPP increased with a rising monthly precipitation sum and rising average monthly temperatures up to a threshold of 11, 14 and 18°C in boreal, temperate and Mediterranean ecosystems, respectively. Across all sites, the highest monthly WUEGPP-values were detected at times of positive anomalies of summer-precipitation. During drought periods with high temperatures, high VPD, little precipitation and low soil water content, the water-use efficiency of gross carbon uptake (WUEGPP) tended to decrease in all forest types because of a stronger decline of GPP compared to ET. However the largest variation of growing season WUEGPP was found between-sites and significantly related to vegetation type: WUEGPP was highest in ecosystems dominated by deciduous trees ranging from 5.0 g CO2 kg H2O−1 for temperate broad-leaved deciduous forests (TD), to 4.5 for temperate mixed forests (TM), 3.5 for temperate evergreen conifers (TC), 3.4 for Mediterranean broad-leaved deciduous forests (MD), 3.3 for Mediterranean broad-leaved evergreen forests (Mbeg), 3.1 for Mediterranean evergreen conifers (MC), 2.9 for boreal evergreen conifers (BC) and only 1.2 g CO2 kg H2O−1 for a boreal wetland site (BT). Although vegetation type and meteorology co-vary, the WUEGPP variation was hardly related to meteorology, as we could show by comparing similar meteorological conditions only. Furthermore we compared across-site WUEGPP only under conditions when the 10% high GPP rates were exhibited. The between site differences remained, and at all sites ecosystem reached higher WUEGPP levels under this condition. This means when vegetation is most productive usually it also maximises the amount of carbon gained per water lost. Overall our results show that water-use efficiency exhibits a strong time-scale dependency in the sense that at longer time-scale meteorological conditions play a smaller role compared to shorter time scale. Moreover, we highlight the role of vegetation in determining carbon-water relation at ecosystem level. Consequently, all predictions of changing carbon-water cycle under changing climate should take into this role and the differences between vegetation types. These results show the strong time-scale dependency of water-use efficiency
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...