ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
  • 2010-2014  (3)
  • 2012  (3)
Collection
Publisher
Years
  • 2010-2014  (3)
Year
  • 1
    Publication Date: 2012-10-04
    Description: The complex coastline of the Earth is over 400 000 km long and about 40% of the world's population lives within 100 km of the sea. Past characterizations of the global coastline were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCAT: Coastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LME: Large Marine Ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles which retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATS). Geographic and hydrologic parameters such as the surface area, volume and fresh water residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. These results can be used for regional analyses and combined with various typologies for upscaling and biogeochemical budgets. In addition, the three levels segmentation can be used for application in Earth System analysis.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-17
    Description: We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation, while the reactions included are the redox pathways of organic carbon oxidation, re-oxidation of reduced nitrogen, iron and sulfur compounds, pore water acid-base equilibria, and dissolution of particulate inorganic carbon (calcite, aragonite, and Mg-calcite). The coastal zone is divided into four environmental units with different particulate inorganic carbon (PIC) and particulate organic carbon (POC) fluxes: reefs, banks and bays, carbonate shelves and non-carbonate shelves. Model results are analyzed separately for each environment and then scaled up to the whole coastal ocean. The model-derived estimate for the present-day global coastal benthic DIC efflux is 126 Tmol yr−1, based on a global coastal reactive POC depositional flux of 117 Tmol yr−1. The POC decomposition leads to a~carbonate dissolution from shallow marine sediments of 7 Tmol yr−1 (on the order of 0.1 Pg C yr−1). Assuming complete re-oxidation of aqueous sulfide released from sediments, the effective net flux of alkalinity to the water column is 29 Teq yr−1, primarily from PIC dissolution (46%) and ammonification (33%). Because our POC depositional flux falls in the high range of global values given in the literature, the reported DIC and alkalinity fluxes should be viewed as upper-bound estimates. Increasing coastal seawater DIC to what might be expected in year 2100 due to the uptake of anthropogenic CO2 increases PIC dissolution by 2.3 Tmol yr−1 and alkalinity efflux by 4.8 Teq yr−1. Our reactive transport modeling approach not only yields global estimates of benthic DIC, alkalinity and nutrient fluxes under variable scenarios of ocean productivity and chemistry, but also provides insights into the underlying processes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-30
    Description: Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...