ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-11
    Description: We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-18
    Description: Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, hydrocarbon genesis, and to constrain and interpret the dynamic topography predicted by time-dependent global mantle convection models. Several global paleogeographic maps have been compiled and published but they are generally presented as static maps with varying temporal resolution and fixed spatial resolution. Existing global paleogeographic maps are also tied to a particular plate motion model, making it difficult to link them to alternative digital plate tectonic reconstructions. To address this limitation, we developed a workflow to reverse-engineer global paleogeographic maps to their present-day coordinates and enable them to be linked to any tectonic reconstruction. Published paleogeographic compilations are also tied to fixed input datasets. We used fossil data from the Paleobiology Database to identify inconsistencies between fossils paleo-environments and published paleogeographic maps, and to improve the location of inferred terrestrial-marine boundaries by resolving these inconsistencies. As a result, the overall consistency ratio between the paleogeography and fossil collections was improved from 76.9 % to 96.1 %. We estimated the surface areas of global paleogeographic features (shallow marine environments, landmasses, mountains and ice sheets), and reconstructed the global continental flooding history since the late Paleozoic based on the amended paleogeographies. Finally, we discuss the relationships between emerged land area and total continental crust area through time, continental growth models, and strontium isotope (87Sr/86Sr) signatures in ocean water. Our study highlights the flexibility of digital paleogeographic models linked to state-of-the-art plate tectonic reconstructions in order to better understand the interplay of continental growth and eustasy, with wider implications for understanding Earth's paleotopography, ocean circulation, and the role of mantle convection in shaping long-wavelength topography.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-19
    Description: Carbon dioxide (CO2) liberated at arc volcanoes that intersect buried carbonate platforms plays a larger role in influencing atmospheric CO2 than those active margins lacking buried carbonate platforms. This study investigates the contribution of carbonate-intersecting arc activity on palaeo-atmospheric CO2 levels over the past 410 million years by integrating a plate motion model with an evolving carbonate platform development model. Our modelled subduction zone lengths and carbonate-intersecting arc lengths approximate arc activity with time, and can be used as input into fully-coupled models of CO2 flux between deep and shallow reservoirs. Continuous and cross-wavelet as well as wavelet coherence analyses were used to evaluate trends between carbonate-intersecting arc activity, non-carbonate-intersecting arc activity and total global subduction zone lengths and the proxy-CO2 record between 410 Ma and the present. Wavelet analysis revealed significant linked periodic behaviour between 75–50 Ma, where global carbonate-intersecting arc activity is relatively high and where peaks in palaeo-atmospheric CO2 is correlated with peaks in global carbonate-intersecting arc activity, characterised by a ~ 32 Myr periodicity and a 10 Myr lag of CO2 peaks after carbonate-intersecting arc length peaks. The linked behaviour may suggest that the relative abundance of carbonate-intersecting arcs played a role in affecting global climate during the Late Cretaceous to Early Paleogene greenhouse. At all other times, atmospheric CO2 emissions from carbonate-intersecting arcs were not correlated with the proxy-CO2 record. Our analysis did not support the idea that carbonate-intersecting arc activity is more important than non-carbonate intersecting arc activity in driving changes in palaeo-atmospheric CO2 levels. This suggests that tectonic controls are more elaborate than the subduction-related volcanic emissions component or that other feedback mechanisms between the geosphere, atmosphere and biosphere played larger roles in modulating climate in the Phanerozoic.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-04
    Description: Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %). The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time associated with transferring reconstruction, filling gaps and modifying the paleogeographic geometries based on the paleobiology test. This indicates that the variation of the underlying plate reconstruction is the main factor that contributes to the terrestrial areal change, and the effect of revising paleogeographic geometries based on paleobiology is secondary.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-15
    Description: The MIPAS instrument onboard the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of day and night observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to spaceborne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space borne lidar CALIOP instrument over the temporal overlap of both satellite missions (June 2006 to March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries, vertical and horizontal resolution are quite different. Discrepancies are observed for the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the southern hemisphere polar vortex than CALIOP. This disagreement is attributed in parts to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence compared to the real fraction of ice within the PSC area in the polar vortex. The entire MIPAS measurement period was processed with the new classification approach. Examples like the detection of the Antarctic NAT belt during early winter, and its possible link to mountain wave events over the Antarctic Peninsula, which are observed by the AIRS instrument, are highlighting the importance of a climatology of in total 9 southern and 10 northern hemisphere winters. The new dataset is valuable both for detailed process studies, and for comparisons with and improvements of the PSC parameterisations used in chemistry transport and climate models.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-29
    Description: Altitude resolved aerosol detection in the upper troposphere and lower stratosphere (UTLS) is a challenging task for remote sensing instruments. Here, we introduce a new method for detecting aerosol in the UTLS based on infrared limb emission measurements. The method applies an improved aerosol-cloud-index that indicates infrared limb spectra affected by aerosol and ice clouds. For the discrimination between aerosol and ice clouds we developed a new method based on brightness temperature difference correlations. The discrimination thresholds for the new method were derived from radiative transfer simulations (including scattering) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/Envisat measurements obtained in 2011. The method not only reliably separates aerosol from ice clouds, but also provides characteristic yet overlapping correlation patterns for volcanic ash and sulfate aerosol. We demonstrate the value of the new approach for volcanic ash and sulfate aerosol originating from the Grímsvötn (Iceland), Puyehue-Cordón Caulle (Chile) and Nabro (Eritrea) eruptions by comparing with Atmospheric Infrared Sounder (AIRS) volcanic ash and SO2 measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-11
    Description: The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter for simulating and predicting the breakup behavior of ice shelves from the calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner) was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic bubbly ice samples with densities between 840 and 870 kg m−3 has been determined by applying a four-point bending technique on single-edge v-notched beam samples. The examined ice core was drilled 70 m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E; 2882 m). Supplementary data are available at doi:10.1594/PANGAEA.835321.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-26
    Description: Movements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2-D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics of major continent-scale rift systems in a global plate tectonic reconstruction from the onset of Pangea breakup until the present day. We evaluate rift obliquity by joint examination of relative extension velocity and local rift trend using the script-based plate reconstruction software pyGPlates. Our results show that the global mean rift obliquity since 230 Ma amounts to 34° with a standard deviation of 24°, using the convention that the angle of obliquity is spanned by extension direction and rift trend normal. We find that more than  ∼ 70 % of all rift segments exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. In many cases, rift obliquity and extension velocity increase during rift evolution (e.g. Australia-Antarctica, Gulf of California, South Atlantic, India-Antarctica), which suggests an underlying geodynamic correlation via obliquity-dependent rift strength. Oblique rifting produces 3-D stress and strain fields that cannot be accounted for in simplified 2-D plane strain analysis. We therefore highlight the importance of 3-D approaches in modelling, surveying, and interpretation of most rift segments on Earth where oblique rifting is the dominant mode of deformation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-16
    Description: Movements of tectonic plates often induce oblique deformation at divergent plate boundaries. This is in striking contrast with traditional conceptual models of rifting and rifted margin formation, which often assume 2D deformation where the rift velocity is oriented perpendicular to the plate boundary. Here we quantify the validity of this assumption by analysing the kinematics of major continent-scale rift systems in a global plate tectonic reconstruction from the onset of Pangea breakup until present-day. We evaluate rift obliquity by joint examination of relative extension velocity and local rift trend using the script-based plate reconstruction software pyGPlates. Our results show that the global mean rift obliquity amounts to 34° with a standard deviation of 24°, using the convention that the angle of obliquity is spanned by extension direction and rift trend normal. We find that more than ~70% of all rift segments exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. In many cases, rift obliquity and extension velocity increase during rift evolution (e.g. Australia-Antarctica, Gulf of California, South Atlantic, India-Antarctica), which suggests an underlying geodynamic correlation via obliquity-dependent rift strength. Oblique rifting produces 3D stress and strain fields that cannot be accounted for in simplified 2D plane strain analysis. We therefore highlight the importance of 3D approaches in modelling, surveying, and interpretation of most rift segments on Earth where oblique rifting is the dominant mode of deformation.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-15
    Description: Traditional approaches to develop 3D geological models employ a mix of quantitative and qualitative scientific techniques, which do not fully provide quantification of uncertainty in the constructed models and fail to optimally weight geological field observations against constraints from geophysical data. Here, we demonstrate a Bayesian methodology to fuse geological field observations with aeromagnetic and gravity data to build robust 3D models in a 13.5 × 13.5 km region of the Gascoyne Province, Western Australia. Our approach is validated by comparing model results to independently-constrained geological maps and cross-sections produced by the Geological Survey of Western Australia. By fusing geological field data with magnetics and gravity surveys, we show that at 89 % of the modelled region has 〉 95 % certainty. The boundaries between geological units are characterized by narrow regions with
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...