ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (50)
  • Copernicus  (22)
  • 2020-2022  (61)
  • 1995-1999  (11)
  • 1
    Publication Date: 2020-05-06
    Description: LAEs and LBGs represent the most common groups of star-forming galaxies at high-z, and the differences between their inherent stellar populations (SPs) are a key factor in understanding early galaxy formation and evolution. We have run a set of SP burst-like models for a sample of 1,558 sources at 3.4 〈 z 〈 6.8 from the Survey for High-z Absorption Red and Dead Sources (SHARDS) over the GOODS-N field. This work focuses on the differences between the three different observational subfamilies of our sample: LAE-LBGs, no-Lyα LBGs and pure LAEs. Single and double SP synthetic spectra were used to model the SEDs, adopting a Bayesian information criterion to analyse under which situations a second SP is required. We find that the sources are well modelled using a single SP in $sim 79{{ m per cent}}$ of the cases. The best models suggest that pure LAEs are typically young low mass galaxies ($tsim 26^{+41}_{-25}$ Myr; $M_{mathrm{star}}sim 5.6^{+12.0}_{-5.5}imes 10^{8} M_{odot }$), undergoing one of their first bursts of star formation. On the other hand, no-Lyα LBGs require older SPs (t ∼ 71 ± 12 Myr), and they are substantially more massive (Mstar ∼ 3.5 ± 1.1 × 109 M⊙). LAE-LBGs appear as the subgroup that more frequently needs the addition of a second SP, representing an old and massive galaxy caught in a strong recent star-forming episode. The relative number of sources found from each subfamily at each z supports an evolutionary scenario from pure LAEs and single SP LAE-LBGs to more massive LBGs. Stellar Mass Functions are also derived, finding an increase of M* with cosmic time and a possible steepening of the low mass slope from z ∼ 6 to z ∼ 5 with no significant change to z ∼ 4. Additionally, we have derived the SFR-Mstar relation, finding a $mathrm{SFR}propto M_{mathrm{star}}^{ eta }$ behaviour with negligible evolution from z ∼ 4 to z ∼ 6.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: In the last decades, changing climate conditions have had a severe impact on sea ice at the western Antarctic Peninsula (WAP), an area rapidly transforming under global warming. To study the development of spring sea ice and environmental conditions in the pre-satellite era we investigated three short marine sediment cores for their biomarker inventory with a particular focus on the sea ice proxy IPSO25 and micropaleontological proxies. The core sites are located in the Bransfield Strait in shelf to deep basin areas characterized by a complex oceanographic frontal system, coastal influence and sensitivity to large-scale atmospheric circulation patterns. We analyzed geochemical bulk parameters, biomarkers (highly branched isoprenoids, glycerol dialkyl glycerol tetraethers, sterols), and diatom abundances and diversity over the past 240 years and compared them to observational data, sedimentary and ice core climate archives, and results from numerical models. Based on biomarker results we identified four different environmental units characterized by (A) low sea ice cover and high ocean temperatures, (B) moderate sea ice cover with decreasing ocean temperatures, (C) high but variable sea ice cover during intervals of lower ocean temperatures, and (D) extended sea ice cover coincident with a rapid ocean warming. While IPSO25 concentrations correspond quite well to satellite sea ice observations for the past 40 years, we note discrepancies between the biomarker-based sea ice estimates, the long-term model output for the past 240 years, ice core records, and reconstructed atmospheric circulation patterns such as the El Niño–Southern Oscillation (ENSO) and Southern Annular Mode (SAM). We propose that the sea ice biomarker proxies IPSO25 and PIPSO25 are not linearly related to sea ice cover, and, additionally, each core site reflects specific local environmental conditions. High IPSO25 and PIPSO25 values may not be directly interpreted as referring to high spring sea ice cover because variable sea ice conditions and enhanced nutrient supply may affect the production of both the sea-ice-associated and phytoplankton-derived (open marine, pelagic) biomarker lipids. For future interpretations we recommend carefully considering individual biomarker records to distinguish between cold sea-ice-favoring and warm sea-ice-diminishing environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-26
    Description: The very first galaxies that started the cosmic dawn likely resided in so-called “minihalos’’, with masses of ∼105–108M⊙, accreting their gas from the intergalactic medium through H2 cooling. Such molecularly-cooled galaxies (MCGs), mostly formed in pristine environments, hosted massive, metal-free stars, and were eventually sterilized by the build-up of a disassociating (Lyman-Werner; LW) background. Therefore, their properties might be very different from the galaxies we see in the later Universe. Although MCGs are probably too faint to be observed directly, we could nevertheless infer their properties from the imprint they leave in the cosmic 21-cm signal. Here we quantify this imprint by extending the public simulation code 21cmFAST to allow for a distinct population of MCGs. We allow MCGs to have different properties from other galaxies, including unique scaling relations for their stellar to halo mass ratios, ionizing escape fractions, and spectral energy distributions. We track inhomogeneous recombinations, disassociative LW feedback, and photo-heating from reionization. After demonstrating how MCGs can shape the 21-cm signal, we explore to what extent current observations can already place constraints on their properties. The CMB optical depth from Planck sets an upper limit on the product of the ionizing escape fraction and the stellar mass in MCGs. When including also the timing of the putative EDGES absorption signal, we find an additional strong degeneracy between the stellar mass and the X-ray luminosity of MCGs. If proven to be of cosmic origin, the timing of the EDGES signal would have been set by MCGs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-20
    Description: Atmospheric radiative transfer models (RTMs) are software tools that help researchers in understanding the radiative processes occurring in the Earth's atmosphere. Given their importance in remote sensing applications, the intercomparison of atmospheric RTMs is therefore one of the main tasks used to evaluate model performance and identify the characteristics that differ between models. This can be a tedious tasks that requires good knowledge of the model inputs/outputs and the generation of large databases of consistent simulations. With the evolution of these software tools, their increase in complexity bears implications for their use in practical applications and model intercomparison. Existing RTM-specific graphical user interfaces are not optimized for performing intercomparison studies of a wide variety of atmospheric RTMs. In this paper, we present the Atmospheric Look-up table Generator (ALG) version 2.0, a new software tool that facilitates generating large databases for a variety of atmospheric RTMs. ALG facilitates consistent and intuitive user interaction to enable the running of model executions and storing of RTM data for any spectral configuration in the optical domain. We demonstrate the utility of ALG in performing intercomparison studies of radiance simulations from broadly used atmospheric RTMs (6SV, MODTRAN, and libRadtran) through global sensitivity analysis. We expect that providing ALG to the research community will facilitate the usage of atmospheric RTMs to a wide range of applications in Earth observation.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-22
    Description: We present new observations of the transmission spectrum of the hot Jupiter WASP-6b both from the ground with the Very Large Telescope FOcal Reducer and Spectrograph (FORS2) from 0.45 to 0.83 μm, and space with the Transiting Exoplanet Survey Satellite from 0.6 to 1.0 μm and the Hubble Space Telescope (HST) Wide Field Camera 3 from 1.12 to 1.65 μm. Archival data from the HST Space Telescope Imaging Spectrograph (STIS) and Spitzer are also re-analysed on a common Gaussian process framework, of which the STIS data show a good overall agreement with the overlapping FORS2 data. We also explore the effects of stellar heterogeneity on our observations and its resulting implications towards determining the atmospheric characteristics of WASP-6b. Independent of our assumptions for the level of stellar heterogeneity we detect Na i, K i, and H2O absorption features and constrain the elemental oxygen abundance to a value of [O/H] ≃ −0.9 ± 0.3 relative to solar. In contrast, we find that the stellar heterogeneity correction can have significant effects on the retrieved distributions of the [Na/H] and [K/H] abundances, primarily through its degeneracy with the sloping optical opacity of scattering haze species within the atmosphere. Our results also show that despite this presence of haze, WASP-6b remains a favourable object for future atmospheric characterization with upcoming missions such as the James Webb Space Telescope.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-22
    Description: We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/Deep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance (in logarithmic Bayes factor, ln B ∼ 33). The metal-rich ([Fe/H] = −2.05 ± 0.03) population is kinematically colder (radial velocity dispersion of $sigma _v=4.9_{-1.0}^{+0.8} , mathrm{km} , mathrm{s}^{-1}$) and more centrally concentrated than the metal-poor ($[{ m Fe/H}]=-2.29_{-0.06}^{+0.05}$) and kinematically hotter population ($sigma _v =11.5_{-0.8}^{+0.9}, mathrm{km} , mathrm{s}^{-1}$). Furthermore, we apply the same analysis to an independent Multiple Mirror Telescope (MMT)/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened (ϵ = 0.75 ± 0.03) and the metal-poor population is closer to spherical ($epsilon =0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are able to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order ${sim}2 , mathrm{km} , mathrm{s}^{-1}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $log _{10}{(J(0{^{circ}_{.}}5)/{ m GeV^{2} , cm^{-5}})}approx 19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of UMi than previously discussed.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-14
    Description: We present low-radio-frequency follow-up observations of AT 2017gfo, the electromagnetic counterpart of GW170817, which was the first binary neutron star merger to be detected by Advanced LIGO–Virgo. These data, with a central frequency of 144 MHz, were obtained with LOFAR, the Low-Frequency Array. The maximum elevation of the target is just 13${_{.}^{circ}}$7 when observed with LOFAR, making our observations particularly challenging to calibrate and significantly limiting the achievable sensitivity. On time-scales of 130–138 and 371–374 d after the merger event, we obtain 3σ upper limits for the afterglow component of 6.6 and 19.5 mJy beam−1, respectively. Using our best upper limit and previously published, contemporaneous higher frequency radio data, we place a limit on any potential steepening of the radio spectrum between 610 and 144 MHz: the two-point spectral index $alpha ^{610}_{144} gtrsim$ −2.5. We also show that LOFAR can detect the afterglows of future binary neutron star merger events occurring at more favourable elevations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-08
    Description: The description of the relationship between interplanetary plasma and geomagnetic activity requires complex models. Drastically reducing the ambition of describing this detailed complex interaction and, if we are interested only in the fractality properties of the time series of its characteristic parameters, a magnetohydrodynamic (MHD) shell model forced using solar wind data might provide a possible novel approach. In this paper we study the relation between the activity of the magnetic energy dissipation rate obtained in one such model, which may describe geomagnetic activity, and the fractal dimension of the forcing. In different shell model simulations, the forcing is provided by the solution of a Langevin equation where a white noise is implemented. This forcing, however, has been shown to be unsuitable for describing the solar wind action on the model. Thus, we propose to consider the fluctuations of the product between the velocity and the magnetic field solar wind data as the noise in the Langevin equation, the solution of which provides the forcing in the magnetic field equation. We compare the fractal dimension of the magnetic energy dissipation rate obtained, of the magnetic forcing term, and of the fluctuations of v⋅bz, with the activity of the magnetic energy dissipation rate. We examine the dependence of these fractal dimensions on the solar cycle. We show that all measures of activity have a peak near solar maximum. Moreover, both the fractal dimension computed for the fluctuations of v⋅bz time series and the fractal dimension of the magnetic forcing have a minimum near solar maximum. This suggests that the complexity of the noise term in the Langevin equation may have a strong effect on the activity of the magnetic energy dissipation rate.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-04-07
    Description: Globally, coffee has become one of the most sensitive commercial crops, being affected by climate change. Arabica coffee (Coffea arabica) grows in traditionally shaded agroforestry systems in tropical regions and accounts for ∼70 % of coffee production worldwide. Nevertheless, the interaction between plant and soil water sources in these coffee plantations remains poorly understood. To investigate the functional response of dominant shade tree species and coffee (C. arabica var. typica) plants to different soil water availability conditions, we conducted a study during near-normal and more pronounced dry seasons (2014 and 2017, respectively) and a wet season (2017) in a traditional coffee plantation in central Veracruz, Mexico. For the different periods, we specifically investigated the variations in water sources and root water uptake via MixSIAR mixing models that use δ18O and δ2H stable isotope composition of rainfall, plant xylem and soil water. To further increase our mechanistic understanding of root activity, the distribution of below-ground biomass and soil macronutrients was also examined and considered in the model as prior information. Results showed that, over the course of the two investigated dry seasons, all shade tree species (Lonchocarpus guatemalensis, Inga vera and Trema micrantha) relied, on average, on water sources from intermediate (〉15 to 30 cm depth: 58± 18 % SD) and deep soil layers (〉30 to 120 cm depth: 34±21 %), while coffee plants used much shallower water sources (
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-22
    Description: The impact of faults and fissures (discontinuities) on the groundwater flow has become important in several parts of the world because the heterogeneous and anisotropic distribution of permeability in fault zones is difficult to characterize. Based on this, we propose an analysis of patterns of parameters measured in groundwater, under the premise that the observed anomalies can be indicators of the hydraulic behavior of the flow in the direction perpendicular to the fault plane. In this context, if the discontinuities are sealed, they behave as hydraulic barriers, causing variation in the continuity of the parameters across the fault plane. Conversely, when faults are a conduit, they appear to have a small or null variation in the distribution of the parameter measurements. The impact of discontinuities in groundwater flow in a zone with a large number of faults and fissures such as that of the Aguascalientes valley is being studied using a graphical-correlation analysis with the revision of 230 wells, through the measurement of parameters such as temperature and static levels across discontinuities, in order to determine the hydraulic behavior of the faults. This investigation considered values over 4 ∘C for geothermal variations and 10 m for hydraulic-head changes to define fault behavior. Results show three zones through mapping analysis, where the fault presents barrier behavior and where the hanging block represents high values; these anomalies are much higher than the average across the valley and indicate the propensity for the fault to restrict horizontal flow. In conclusion, the Oriente fault presents complex behavior of a barrier–conduct system along the fault. This analysis gives a robust way to describe fault behavior without referring to elaborate and invasive hydrological investigations.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...