ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T3-63 .
    Publication Date: 2019-09-23
    Description: Due to their favorable P-T conditions and organic-rich deposits, sub-seafloor sediments in the northern Gulf of Mexico are known to have a large potential for gas hydrate accumulations. The presence of gas hydrates within sediments of the Green Canyon block has been proven by various methods, incl. seismic imaging, geochemical analysis, and drilling conducted mainly as a part of Joint Industry Project (JIP) Phase II. Gas hydrates reported therein usually occur as tens up to hundreds of meters thick sections with moderate to high concentrations within a range of 50 – 70 vol. % of pore space, and hence, seem to offer a considerable natural deposit of methane gas. The main focus of this study was to explore the complex effects of a set of control- parameters responsible for hydrocarbon migration and storage within the Gas Hydrate Stability Zone (GHSZ) on the accumulation of gas hydrates. To investigate the processes of basin formation and its subsidence history, source rock maturation, hydrocarbon migration and expulsion, and to quantify the gas hydrate accumulation potential, 3-D numerical study has been conducted using PetroMod. The area of interest extends over ~14 km x 33 km and covers the edge of the Sigsbee Escarpment representing the main salt mobility front in the region. The simulation contains full depositional history of the Green Canyon block, incl. salt deposition and re-mobilization as well as its further implications for temperature field, fluids migration and sedimentary layers distribution. Methane generation has been resolved by in-situ POC degradation and deep thermogenic mobilization from two distinct hydrocarbon sources. As a result, we present a number of likely scenarios of gas hydrate formation and accumulation in the study area that have been calibrated against available data.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    China Geological Survey
    In:  [Paper] In: 8. International Conference on Gas Hydrates (ICGH8), 28.07.-01.08.2014, Beijing, China . Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014 ; T2-37 .
    Publication Date: 2014-11-21
    Description: The Alaska North Slope comprises an area of about 400,000 km2 including prominent gas and oil fields. Gas hydrates occur widely at the Alaska North Slope. A recent assessment by the USGS estimates 0.7-4.47 x 1012 m3 of technically recoverable gas hydrates based on well data and drilled hydrate accumulations. In spring 2012 a production field trial, testing CO2/N2 injection and depressurization, was conducted by USDOE/JOGMEC/ConocoPhillips at the Ignik Sikumi site. The 3D geological model of the Alaska North Slope developed by the USGS and Schlumberger is used to test the new gas hydrate module in the petroleum systems modeling software PetroMod®. Model results of the present extent of the gas hydrate stability zone (GHSZ) are in good agreement with results from well data. The model simulations reveal that the evolution of the GHSZ over time is primarily controlled by the climatic conditions regulating the extent of the permafrost during the last 1 Myr. Preliminary model runs predict the highest gas hydrate saturations near the major faults and at the bottom of the GHSZ, where thermogenic methane gas accumulates after migration through the most permeable stratigraphic layers (e.g. Sag River Sandstone Fm, Ivishak Fm). Gas hydrate saturations predicted for the Mount Elbert Stratigraphic Test Well and the Ignik Sikumi sites are basically controlled by the alternation of layers with different permeability and the fault properties (time of opening, permeability, etc). Further results including a total gas hydrate assessment for the Alaska North Slope will be presented during the conference.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...