ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-08-01
    Description: Nitrogen dynamics and cycling are important in plant-soil ecosystems, and they may differ between hydrocarbon-contaminated and uncontaminated soils. The objective of this experiment was to study the effects of petroleum hydrocarbons and remediation methods on nitrogen dynamics and cycling in plant-soil ecosystems. The experiment involved two plant species (barley and field pea) grown in soils at four different hydrocarbon levels (0, 5, 25 and 55 g kg−1). Hydrocarbon contamination significantly reduced N uptake by plants, but increased N accumulation in soil microbial biomass. It widened the C:N ratio in soil and led to more available N being immobilized by soil microorganisms, which reduced available N for plantuptake. Urease activity increased with hydrocarbon content in soil due to the increase of microbial biomass and activity. Key words: Nitrogen dynamics, hydrocarbon contamination, microbial activity, remediation, Black Chernozem
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-11-01
    Description: The use of low-cost materials for P removal is of interest for developing cost-effective techniques for preventing P pollution. This paper reports a study on phosphate removal from aqueous solutions by sorption on two volcanic soils. The raw and HCl-treated soils were characterized with respect to oxalate-extractable and dithionite-extractable Al and Fe contents, surface area, and P sorption capacities. The phosphate sorption isotherms, kinetics, pH effects, and desorbability were evaluated in batch tests. The measured isotherm data were well fitted by the Freundlich and Temkin models. Phosphate sorption on these soils was relatively fast and the kinetics could be satisfactorily described by the simple Elovich and power function equations. The two soils had maximum phosphate sorption capacities of approximately 0.85 and 1.35 mg g-1 gram of soil at pH 6.0–6.5. The pH had different effects on phosphate sorption on these soils, likely due to either calcium phosphate precipitation or surface repulsion of the negatively charged phosphate species at a higher pH. Column flow-through tests using both synthetic phosphate solution and liquid swine manure confirmed the phosphate removal ability of the volcanic soils. It was concluded that volcanic soils could be potential low-cost materials for controlling P pollution from agricultural sources. Key words: Phosphate removal, volcanic soil, sorption, isotherm, kinetics, desorption
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...