ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (30)
  • Canadian Science Publishing  (20)
  • 1
    Publication Date: 2019
    Description: 〈p〉Telomerase defers the onset of telomere shortening and cellular senescence by adding telomeric repeat DNA to chromosome ends, and its activation contributes to carcinogenesis. Telomerase minimally consists of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). However, how telomerase assembles is largely unknown. Here, we demonstrate that PES1 (Pescadillo), a protein overexpressed in many cancers, forms a complex with TERT and TR through direct interaction with TERT, regulating telomerase activity, telomere length maintenance, and senescence. PES1 does not interact with the previously reported telomerase components Reptin, Pontin, p23, and Hsp90. PES1 facilitates telomerase assembly by promoting direct interaction between TERT and TR without affecting TERT and TR levels. PES1 expression correlates positively with telomerase activity and negatively with senescence in patients with breast cancer. Thus, we identify a previously unknown telomerase complex, and targeting PES1 may open a new avenue for cancer therapy.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-01
    Description: Drury, C. F., Reynolds, W. D., Yang, X. M., Tan, C. S., Guo, X., McKenney, D. J., Fleming, R. and Denholme, K. 2014. Influence of compost source on corn grain yields, nitrous oxide and carbon dioxide emissions in southwestern Ontario. Can. J. Soil Sci. 94: 347–355. The impacts of compost type on corn grain yields over 10 yr and N2O and CO2 emissions in the first 3 yr after compost application were evaluated on a Brookston clay loam soil in Woodslee, ON. The treatments included yard waste compost (YWC), kitchen food waste compost (FWC), and pig manure compost (PMC), which were applied once in the fall of 1998 to field plots at a rate of 75 Mg ha−1 (dry weight basis) and no further applications occurred thereafter as well as a fertilized control treatment. Large application rates were examined to see if the various compost sources could have a lasting effect on soil C storage, N2O and CO2 emissions and corn yields. Compost application significantly increased corn grain yields by 12.9 to 19.4% over 3 yr. However, after 10 yr, FWC was the only compost source which significantly increased yields by 11.3% compared with the fertilized control. Emissions of N2O and CO2 varied with compost type, soil water content and time. Greater N2O emissions occurred in 1999 from PMC (5.4 kg N ha−1) than YWC (2.7 kg N ha−1) and FWC (1.3 kg N ha−1); however, the N2O emissions from the PMC were less than from YWC and FWC in 2001. The 3-yr average N2O emissions were significantly greater with PMC (2.7 kg N ha−1) and YWC (2.5 kg N ha−1) compared with the control (1.5 kg N ha−1). Hence, the timing of N2O emissions varied by compost type, but the overall losses were similar as the higher N2O losses in the first year with PMC were offset by the reduced losses with PMC in the third year. Significantly more CO2 was produced from the FWC in 2000 and from PMC in 2001 than the control.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-01
    Description: Yang, J. Y., Huffman, E. C., Drury, C. F., Yang, X. M. and De Jong, R. 2011. Estimating the impact of manure nitrogen losses on total nitrogen application on agricultural land in Canada. Can. J. Soil Sci. 91: 107–122. About 1 million tonnes (1 Tg=1012 g) of livestock manure N are applied to farmland in Canada each year. Comprehensive information on manure N production and losses from manure during on-farm storage, handling and field application is scarce, especially at a regional scale. However, manure N losses during storage and land application are of considerable concern with respect to nitrogen use efficiency and environmental pollution of air, soil and water. In this paper, manure N production, manure N losses during storage and land application and manure N mineralization from organic manure and the resultant manure N available for annual crops were estimated using the Census of Agriculture database, Farm Environmental Management Survey data and manure N loss factors obtained from the literature. A database of fertilizer N application rates for field crops was developed at the regional scale based on recommendations provided in agronomic extension bulletins and fertilizer N sales. Fertilizer N and available manure N (i.e., total manure N produced minus N losses plus N mineralized from manure applied in previous years) were allocated to each of 24 crops at the regional scale from 1981 to 2006. The amount of manure N produced in Canada increased by 18.7% from 0.928 Tg in 1981 to 1.102 Tg in 2006. We estimated that 35.6% of the manure N produced was immediately available to crops, 25.6% was lost during storage and land application and 38.8% was carried over to the next year as organic N. The amount of fertilizer N applied to crops increased dramatically from 0.928 Tg in 1981 to a peak level of 1.68 Tg in 2000. There were significant changes in manure N production and application to farmland both on a regional and a temporal basis.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-01
    Description: Reynolds, W. D., Drury, C. F., Tan, C. S. and Yang, X. M. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci. 95: 251–268. The benefits of compost additions on soil organic carbon content and crop productivity are extant in the literature, but detailed studies of compost effects on soil physical quality (SPQ) are limited. The objective of this study was therefore to describe how one-time additions of compost impact the immediate, mid-term and long-term SPQ and crop yields of an agricultural soil. Food waste compost (FWC) was incorporated once into the top 10 cm of a humid-temperate Brookston clay loam soil at rates of 0 (Control), 75 dry t ha−1 (FWC-75), 150 dry t ha−1 (FWC–150) and 300 dry t ha−1 (FWC-300); measurements of SPQ parameters and corn yield were then made annually over the next 11 yr. The SPQ parameters included bulk density (BD), organic carbon content (OC), air capacity (AC), plant-available water capacity (PAWC), relative field capacity (RFC), and saturated hydraulic conductivity (KS), which were obtained from intact (undisturbed) soil core samples. Prior to compost addition, BD, OC, AC, PAWC, RFC and KS were substantially non-optimal, and BD had increased relative to virgin soil by 46%, while OC, AC and PAWC had decreased relative to virgin soil by 60, 56 and 43%, respectively. Improvements in SPQ 1 yr after compost addition were negligible or small for FWC-75 and FWC-150, but FWC-300 generated optimal values for BD, OC, AC, PAWC and RFC. The SPQ parameters degraded with time, but 11 yr after compost addition, OC and AC under FWC-300 were still within their optimal ranges, as well as significantly (P
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-01
    Description: Xie, H. T., Yang, X. M., Drury, C. F., Yang, J. Y. and Zhang, X. D. 2011. Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for Brookston clay loam soil in Southwestern Ontario, Canada. Can. J. Soil Sci. 91: 53–63. Mid-infrared (MIR) and near-infrared (NIR) spectroscopy of soils have been tested to estimate soil organic carbon (SOC) and total N (TN) concentrations at local, regional and national scales. However, these methods have rarely been used to assess SOC and TN concentrations of the same soil under different management practices. The objective of this study was to determine if models developed from infrared spectra of Brookston clay loam soils under different management practices could be used to estimate SOC, and TN concentrations and the C:N ratio. Soils used for model calibration included 217 samples from a long-term fertilization and crop rotation study and a long-term compost study, whereas 78 soil samples from a long-term tillage study on the same soil type were used for model validation. Soil organic carbon and TN concentrations of all samples were also analyzed using dry combustion techniques. Soil samples were scanned from 4000 to 400 cm−1 (2500–25 000 nm) for MIR spectra and from 8000 to 4000 cm−1 (1250–2500 nm) for NIR spectra. Partial least squares regression (PLSR) analysis was used for the calibration dataset to build prediction models for SOC, TN and C:N ratio. The SOC and TN concentrations determined using dry combustion techniques were compared with the prediction from the models using the calibration datasets. The predictions of SOC and TN concentrations by the PLSR method using infrared spectra were statistically sound, with high coefficient of determination with the calibration dataset (R2cal, SOCMIR=0.99 and SOCNIR=0.97, TNMIR=0.98 and TNNIR=0.97) and the validation dataset (R2val, SOCMIR=0.96 and SOCNIR=0.95, TNMIR=0.96 and TNNIR=0.95) and low root mean square error (RMSEPcal, SOCMIR=0.93 and SOCNIR=1.60, TNMIR=0.08 and TNNIR=0.12; RMSEPval, SOCMIR=1.40 and SOCNIR=1.75, TNMIR=0.11 and TNNIR=0.12). The predictions of SOC and TN concentrations in the 5 to 30 cm depth were better than the predictions for either the surface (0 to 5 cm) soils or for soils from lower depths (〉30 cm). The models could be used as an alternative method for determining SOC and TN concentrations of Brookston clay loam soils; however, larger sample populations and improved model algorithms could further improve predictions.
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-05-01
    Description: The effects of no-tillage (NT) and moldboard plowing (MP) on the distribution and storage of soil organic carbon (SOC) and different C fractions were determined along a transect on a private farm in southern Ontario, Canada, where a paired NT and MP strip traversing three soil series had been in existence for 19 yr. Soil samples were collected to a depth of 60 cm in seven increments. SOC was determined in each sample and for the top 30 cm, the organic carbon was fractionated into loose-, occluded-particulate organic matter (loose-POM and occluded-POM) and humified fraction (HF). After 19 yr, soils under NT contained significantly (P 〈 0.05) more SOC than soils under MP on both an equivalent depth basis and an equivalent mass basis. Greater concentrations of loose- and occluded-POM were found in NT than MP surface soils (0-10 cm). MP favored higher loose-POM contents than NT practices at a depth of 10-20 cm. The HF fraction accounted for most of the increase in SOC in the Huron and Brady soils, whereas the occluded POM accounted for more of the increase in the Fox soil. Our results indicate that the extent of SOC sequestration under NT is strongly dependent on soil type and cropping history. Key words: Tillage practices, soil organic carbon, C fraction, C sequestration
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-01
    Description: It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-11-01
    Description: In support of national environmental and economic modeling of agri-environmental indicators, greenhouse gases, carbon sequestration and policy assessment, fertilizer and manure nitrogen application rates were estimated for individual crops at the scale of the 1:1 m Soil Landscapes of Canada polygons. This database provides an estimate of the amount of nitrogen applied to each crop and is based on provincial fertilization recommendations, the type and number of livestock and manure produced and reported amounts of fertilizer sold. The database is being incorporated into ongoing programs related to international reporting, environmental performance and policy formulation at Agriculture and Agri-Food Canada.This paper describes the procedures developed to estimate fertilizer and manure nitrogen inputs for each crop type within each polygon. These procedures include: (i) the compilation of soil-specific recommended nitrogen application rates from provincial extension guide lines and experts; (ii) the calculation of total manure nitrogen production from animal numbers and excretion rates; (iii) the calculation of manure nitrogen available after land application losses and (iv) the adjustment of total fertilizer nitrogen applied to match reported sales at the provincial level. The calculation procedures were incorporated into the Canadian Agricultural Nitrogen Budget model, with provisions for transferring the data to other models and for other applications. Key words: Fertilizer nitrogen, manure nitrogen, nitrogen application rates, nitrogen model, Soil Landscapes of Canada, Census of Agriculture
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-08-01
    Description: Applying ultrasound energy to soil-water suspensions (sonication) is an established method of determining the size distributions of soil primary mineral particles and associated organic matter. The size distributions may vary, however, with sonication input energy and soil type. The objective of this study was to determine the effects of sonication input energy on the size distributions of soil mineral particles and organic matter for a range of soil textures and carbon contents typical of agricultural soils in southwestern Ontario. The soils included a Brookston clay loam, a Brookston clay, a Huron silt loam, a Perth silt loam and a Harrow sandy loam. All soils were under no-tillage management. Nine sonication energies ranging from 50 to 1500 J mL–1 were applied to soil-water suspensions (1:4 mass ratio), and the soil particle size distribution results were compared with those obtained using the standard chemical dispersion (pipette) method. The three medium- and coarse-textured soils (Huron, Perth, Harrow) required about 250 J mL–1 for complete dissociation of soil aggregates, while the two fine-textured soils (Brookston) required sonication energies of 600-750 J mL–1. Increasing sonication energy increased the amount of soil organic carbon (SOC) measured in the clay-size fraction and decreased the amounts in the sand and silt fractions. Therefore, accurate determinations of particle size distribution and SOC contents require an initial assessment of the amount of sonication energy required for the complete dispersion of the particle size fractions. For the Brookston clay loam and Brookston clay soils, 40–52% less particulate SOC was found in the sand fraction at 750 J mL–1 sonication energy than that obtained using the standard pipette method, indicating particle size reduction by sonication of particle organic matter. It should be noted that the sand-size SOC typically represents a small fraction. Furthermore, sonication had a minor effect on the SOC content of the clay fraction. It was concluded that sonication is a viable technique for determining the size distribution of soil primary mineral particles, as well as the amount of SOC associated with the silt and clay fractions. Key words: Sonication, ultrasound energy, particle size distribution, organic carbon fractionation, clay soil
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-03-01
    Description: A Canadian Agricultural Nitrogen Budget model was developed to calculate the agro-environmental indicators: Residual soil nitrogen (RSN) and Indicator of Risk of Water Contamination by Nitrogen (IROWC-N) for 3500 polygons of the 1:1 m Soil Landscapes of Canada scale. Residual Soil Nitrogen was calculated for the census years 1981, 1986, 1991, 1996 and 2001. These results were then used in conjunction with climate data to calculate over-winter N loss and its concentration in the drainage water. The main inputs were the acreages, yields and N recommendation rates for major crops, and the types and numbers of livestock. Various coefficients and assumptions were incorporated into the calculations. Validation of the model was carried out using provincial nitrogen sales data, and results showed good agreement between the calculated fertilizer N and the amount of fertilizer N sold in each province in 1996 and 2001. The two indicators were linked to outputs of the economic-based Canadian Regional Agricultural Model in order to assess the impacts of policy scenarios on nitrogen balance. At the national scale, the scenario of improved N fertilization practices reduced the RSN by 13%. RSN was also sensitive to the N2O:N2 ratio resulting from N losses through denitrification. Key words: Landscape nitrogen model, Agri-Environmental Indicator, Soil Landscapes of Canada, Census of Agriculture
    Print ISSN: 0008-4271
    Electronic ISSN: 1918-1841
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...