ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Canadian Science Publishing  (2)
  • 2005-2009  (2)
  • 1
    Publication Date: 2005-08-01
    Description: In forests of eastern North America, introduced pathogens have caused widespread declines in a number of important tree species, including dominant species such as American beech (Fagus grandifolia Ehrh.). Most studies have focused on changes in forest composition and structure as a direct result of mortality caused by a pathogen. Our field studies of windthrow resistance in forests of northern New York and northern Michigan demonstrate that resistance of beech trees to windthrow is severely reduced by beech bark disease (BBD). This reduced resistance was primarily due to the increase in the probability of stem breaks of moderately and highly infected beech trees. The severity of BBD infection on individual trees has a significant negative effect on resistance to windthrow. We tested potential consequences of this for long-term composition and structure in these forests by using a simulation model, SORTIE. We found that species such as yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) increased in basal area primarily because of the effect BBD had on the creation of new seedbed substrates. Our results highlight the indirect effects that host-specific pathogens can have on community dynamics and species coexistence in forests.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-09-01
    Description: We have characterized overstory light transmission, understory light levels, and plant communities in mixed wood boreal forests of northwestern Quebec with the objective of understanding how overstory light transmission interacts with composition and time since disturbance to influence the diversity and composition of understory vegetation, and, in turn, the further attenuation of light to the forest floor by the understory. Overstory light transmission differed among three forest types (aspen, mixed deciduous–conifer, and old cedar-dominated), with old forests having higher proportions of high light levels than aspen and mixed forests, which were characterized by intermediate light levels. The composition of the understory plant communities in old forests showed the weakest correlation to overstory light transmission, although those forests had the largest range of light transmission. The strongest correlation between characteristics of overstory light transmission and understory communities was found in aspen forests. Species diversity indices were consistently higher in aspen forests but showed weak relationships with overstory light transmission. Light attenuation by the understory vegetation and total height of the understory vegetation were strongly and positively related to overstory light transmission but not forest type. Therefore, light transmission through the overstory influenced the structure and function of understory plants more than their diversity and composition. This is likely due to the strong effect of the upper understory layers, which tend to homogenize light levels at the forest floor regardless of forest type. The understory plant community acts as a filter, thereby reducing light levels at the forest floor to uniformly low levels.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...