ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-14
    Description: Three-dimensional direct numerical simulations are performed that give us an in-depth account of the evolution and structure of the double-diffusive interface. We examine the diffusive convection regime, which, in the oceanographically relevant case, consists of relatively cold fresh water above warm salty water. A 'double-boundary-layer' structure is found in all of the simulations, in which the temperature (T) interface has a greater thickness than the salinity (S) interface. Therefore, thin gravitationally unstable boundary layers are maintained at the edges of the diffusive interface. The TS-interface thickness ratio is found to scale with the diffusivity ratio in a consistent manner once the shear across the boundary layers is accounted for. The turbulence present in the mixed layers is not able to penetrate the stable stratification of the interface core, and the TS-fluxes through the core are given by their molecular diffusion values. Interface growth in time is found to be determined by molecular diffusion of the S-interface, in agreement with a previous theory. The stability of the boundary layers is also considered, where we find boundary layer Rayleigh numbers that are an order of magnitude lower than previously assumed. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-03
    Description: Ice-covered waterbodies are far from being quiescent systems. In this paper, we investigate ice-covered freshwater basins heated by solar radiation that penetrates across waters with temperatures below or near the temperature of maximum density. In this scenario, solar radiation sets a radiative buoyancy flux, Φr, that forces increments of temperature/density in the upper fluid volume, which can become gravitationally unstable and drive convection. The goal of this study is twofold. We first focus on formulating the mechanical energy budget, putting emphasis on the conversion of Φr to available potential energy, Ea. We find that Ea results from a competition among Φr and the irreversible mixing controlled by the diapycnal and the laminar mixing rates, respectively. Secondly, and based on the above result, we introduce an integral formulation of the mixing efficiency to quantify the rate of mixing over the relevant time scale τ, ηc ≡ ΔEb,τ/Er,τ, where ΔEb,τ and Er,τ are the change of background potential energy and the time-integrated Φr over τ. The above definition is applied to estimate ηc for the first time, finding an approximate value of ηc ≊ 0.65. This result suggests that radiatively heated ice-covered waterbodies might be subject to high mixing rates. Overall, the present work provides a framework to examine energetics and mixing in ice-covered waters. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...