ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-01
    Description: In fully developed evaporite cycles, effective viscosity contrasts of up to five orders of magnitude are possible between different layers, but the structures and mechanics in evaporites with such extreme mechanical stratification are not well understood. The Zechstein 3 unit in the Veendam salt pillow in the Netherlands contains anhydrite, halite, carnallite and bischofite, showing this extreme mechanical stratification. The Veendam Pillow has a complex multiphase salt tectonic history as shown by seismic reflection data: salt withdrawal followed by convergent flow into the salt pillow produced ruptures and folds in the underlying Z3-anhydrite–carbonate stringer and deformed the soft Z3-1b layerWe analysed a unique carnallite- and bischofite-rich drill core from the soft Z3-1b layer by macroscale photography, bulk chemical methods, X-ray diffraction and optical microscopy. Results show high strain in the weaker bischofite- and carnallite-rich layers, with associated dynamic recrystallisation at very low differential stress, completely overprinting the original texture. Stronger layers formed by alternating beds of halite and carnallite show complex recumbent folding on different scales commonly interrupted by sub-horizontal shear zones with brittle deformation, veins and boudinage. We attribute this tectonic fragmentation to be associated with a softening of the complete Z3-1b subunit during its deformation. The result is a tectonic mélange with cm- to 10 m-size blocks with frequent folds and boudinage. We infer that these structures and processes are common in deformed, rheologically strongly stratified evaporites.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-01
    Description: The presence of salt in dilatant normal faults may have a strong influence on fault mechanics in the Groningen field and on the related induced seismicity. At present, little is known of the structure of these fault zones. This study starts with the geological evolution of the Groningen area, where, during tectonic faulting, rock salt may have migrated downwards into dilatant faults. These fault zones therefore may contain inclusions of rock salt. Because of its rate-dependent mechanical properties, the presence of salt in a fault may introduce a loading-rate dependency into fault movement and affect the distribution of magnitudes of seismic events. We present a first-look study showing how these processes can be investigated using a combination of analogue and numerical modelling. Full scaling of the models and quantification of implications for induced seismicity in Groningen require further, more detailed studies: an understanding of fault zone structure in the Groningen field is required for improved predictions of induced seismicity. The analogue experiments are based on a simplified stratigraphy of the Groningen area, where it is generally thought that most of the Rotliegend faulting has taken place in the Jurassic, after deposition of the Zechstein. This suggests that, at the time of faulting, the sulphates were already transformed into brittle anhydrite. If these layers were sufficiently brittle to fault in a dilatant fashion, rock salt was able to flow downwards into the dilatant fractures. To test this hypothesis, we use sandbox experiments where we combine cohesive powder as analogue for brittle anhydrites and carbonates with viscous salt analogues to explore the developing fault geometry and the resulting distribution of salt in the faults. Using the observations from analogue models as input, numerical models investigate the stick-slip behaviour of fault zones containing ductile material qualitatively with the discrete element method (DEM). Results show that the DEM approach is suitable for modelling the seismicity of faults containing salt. The stick-slip motion of the fault becomes dependent on shear loading rate with a modification of the frequency–magnitude distribution of the generated seismic events.
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...