ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-27
    Description: The wings of butterflies are relatively heavier than those of other insects, and the inertial force and torque due to the wing mass are likely to have a significant effect on agility and manoeuvrability in the flapping flight of butterflies. In the present study, the effect of wing mass on the free flight of butterflies is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We use a butterfly-like model consisting of two square wings with mass connected by a rod-shaped body. We simulate the free flights of the model by changing the ratio of the wing mass to the total mass of the model and also changing the mass distributions of the wings. As a result, we find that the aerodynamic vertical and horizontal forces decrease as the wing-mass ratio increases, since for a large wing-mass ratio the body has large vertical and horizontal oscillations in each stroke and consequently the speeds of the wing tip and the leading edge relatively decrease. In addition, we find that the wing-mass ratio has a dominant effect on the rotational motion of the model, and a large wing-mass ratio reduces aerodynamic force and intensifies the time variation of the pitching angle. From the results of our free flight simulations, we clarify the critical wing-mass ratio between upward flight and downward flight and find that the critical wing-mass ratio is a function of the non-dimensional total mass and almost independent of the wing length. Then, we evaluate the effect of the wing-mass distribution on the critical wing-mass ratio. Finally, we discuss the limitations of the model. © 2019 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Description: We examined microorganisms and pollen in a pit (4.5m deep) and a shallow ice core (25.01m long) from Sofiyskiy glacier in the Altai mountains of Russia for potential use in dating ice cores from a mid-latitude glacier. The ice-core and pit samples contained various green algae, cyanobacteria, bacteria, fungi and pollen. In the vertical profiles of the pit, algal biomass peaks corresponded to high δ18O layers and Pinaceae pollen peaks, suggesting that these algae grew during the melt season. In contrast, the layer with the lowest δ18O contained almost no algal cells. Major peaks of the cyanobacteria, bacteria and a fungus roughly corresponded to those of the algae. However, seasonal changes in these microorganisms became indistinct deeper in the core, as did the seasonal variation in δ18O and major ions, most likely due to heavy meltwater percolation and/or post-depositional decomposition. In contrast, clear seasonal cycles were evident in the algal biomass and pollen in snow samples. Assuming that the peaks of the snow algae and Pinaceae pollen marked summer layers and that the layers with almost no snow algae represented the winter layers, we estimated that the ice core contained 16 annual layers (1985–2001). The mean annual mass balance for the period was estimated to be 1.01mw.e. The value agreed well with those estimated from stake measurements, indicating that snow algae and pollen could provide reliable boundary markers of annual layers in the ice cores of this region.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...