ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-07-25
    Description: When air blows over water the wind exerts a stress at the interface thereby inducing in the water a sheared turbulent drift current. We present scaling arguments showing that, if a wind suddenly starts blowing, then the sheared drift current grows in depth on a timescale that is larger than the wave period, but smaller than a timescale for wave growth. This argument suggests that the drift current can influence growth of waves of wavelength λ that travel parallel to the wind at speed c. In narrow ‘inner’ regions either side of the interface, turbulence in the air and water flows is close to local equilibrium; whereas above and below, in ‘outer’ regions, the wave alters the turbulence through rapid distortion. The depth scale, la, of the inner region in the air flow increases with c/u*a (u*a is the unperturbed friction velocity in the wind). And so we classify the flow into different regimes according to the ratio la/λ. We show that different turbulence models are appropriate for the different flow regimes. When (u*a + c)/UB(λ) ≪ 1 (UB(z) is the unperturbed wind speed) la is much smaller than λ. In this limit, asymptotic solutions are constructed for the fully coupled turbulent flows in the air and water, thereby extending previous analyses of flow over irrotational water waves. The solutions show that, as in calculations of flow over irrotational waves, the air flow is asymmetrically displaced around the wave by a non-separated sheltering effect, which tends to make the waves grow. But coupling the air flow perturbations to the turbulent flow in the water reduces the growth rate of the waves by a factor of about two. This reduction is caused by two distinct mechanisms. Firstly, wave growth is inhibited because the turbulent water flow is also asymmetrically displaced around the wave by non-separated sheltering. According to our model, this first effect is numerically small, but much larger erroneous values can be obtained if the rapid-distortion mechanism is not accounted for in the outer region of the water flow. (For example, we show that if the mixing-length model is used in the outer region all waves decay!) Secondly, non-separated sheltering in the air flow (and hence the wave growth rate) is reduced by the additional perturbations needed to satisfy the boundary condition that shear stress is continuous across the interface. In a companion paper, we develop a numerical model for the coupled air-water flow with waves of arbitrary speed and in another we examine the detailed energy budget of the wave motions. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-02-10
    Description: We develop a numerical model of the interaction between wind and a small-amplitude water wave. The model first calculates the turbulent flows in both the air and water that would be obtained with a flat interface, and then calculates linear perturbations to this base flow caused by a travelling surface wave. Turbulent stresses in the base flow are parameterized using an eddy viscosity derived from a low-turbulent-Reynolds-number k -ε model. Turbulent stresses in the perturbed flow are parameterized using a new damped eddy viscosity model, in which the eddy viscosity model is used only in inner regions, and is damped exponentially to zero outside these inner regions. This approach is consistent with previously developed physical scaling arguments. Even on the ocean the interface can be aerodynamically smooth, transitional or rough, so the new model parameterizes the interface with a roughness Reynolds number and retains effects of molecular stresses (on both mean and turbulent parts of the flow). The damped eddy viscosity model has a free constant that is calibrated by comparing with results from a second-order closure model. The new model is then used to calculate the variation of form drag on a stationary rigid wave with Reynolds number, R. The form drag increases by a factor of almost two as R drops from 2 ×104 to 2 × 103 and shows remarkably good agreement with the value measured by Zilker & Hanratty (1979). These calculations show that the damped eddy viscosity model captures the physical processes that produce the asymmetric pressure that leads to form drag and also wave growth. Results from the numerical model show reasonable agreement with profiles measured over travelling water waves by Hsu Hsu (1983), particularly for slower moving waves. The model suggests that the wave-induced flow in the water is irrotational except in an extremely thin interface layer, where viscous stresses are as likely to be important as turbulent stresses. Thus our study reinforces previous suggestions that the region very close to the interface is crucial to wind-wave interaction and shows that scales down to the viscous length may have an order-one effect on the development of the wave. The energy budget and growth rate of the wave motions, including effects of the sheared current and Reynolds number, will be examined in a subsequent paper.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1967-01-11
    Description: A two-dimensional, incompressible, irrotational, linearized flow model is employed in this analysis of two supercavitating, flat-plate hydrofoils in the presence of a free surface. The cavities are taken to have finite lengths, and gravity is neglected. The ensuing boundary-value problem is converted, by means of conformal mapping, to a mixed-boundary-value problem for the complex velocity in the upper half-plane. This altered problem is solved by use of the methods of thin-aerofoil theory and the solution involves digital-computer evaluation of a large number of incomplete elliptic integrals of the first and third kinds. Typical results are presented in graphs, and the results of the present work are compared with Yim's (1964) theory for a single supercavitating body near a free surface.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1976-12-07
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1980-01-29
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-03-01
    Description: A series of two- and three-dimensional numerical simulations of transient flow in a side-heated cavity has been conducted. The motivation for the work has been to resolve discrepancies between a flow description based on scaling arguments and one based on laboratory experiments, and to provide a more detailed description of the approach to steady state. All simulations were for a Rayleigh number of 2 x 109, and a water-filled cavity of aspect ratio 1. The simulations (beginning with an isothermal fluid at rest) generally agree with the results of the scaling arguments. In addition, the experimental observations are entirely accounted for by the position of the measurement instruments and the presence of an extremely weak, stabilizing temperature gradient in the vertical. © 1989, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...