ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1975-12-01
    Description: For incompressible three-dimensional (two-dimensional) turbulence of finite energy, bounds are obtained on energy (enstrophy) flux. To estimate the nonlinear terms, we use a decomposition of the Fourier space into shells of exponentially increasing radii and the property of boundedness in position space of square-integrable functions with Fourier transforms of compact support. In the limit of zero viscosity, it is shown that the three-dimensional (two-dimensional) energy (enstrophy) inertial range, if it exists, cannot have an energy spectrum steeper than [Formula ommited]. Similar results are obtained for the advection of a passive scalar. The connexion with the problem of homogeneous turbulence and intermittency is briefly discussed. © 1975, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-09-01
    Description: We present three-dimensional numerical simulations of convection in a low-Prandtl-number fluid confined between two infinite horizontal bounding surfaces maintained at constant temperatures. We consider the case of free-slip boundary conditions for a fluid of Prandtl number Pr = 0.2 and that of rigid boundary conditions with Pr = 0.025. In the former situation, we observe stationary, periodic, biperiodic and chaotic regimes as the Rayleigh number is increased. In the later situation, the dynamics involves very different characteristic times, and only stationary and time-periodic solutions have been simulated. Convergence to the later regime may occur after a long transient where the amplitude of the oscillation is slowly modulated. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-09-01
    Description: Direct numerical simulations of decaying high-Reynolds-number turbulence are presented at resolutions up to 800 for general periodic flows and 2048 for periodic flows with large-scale symmetries. For turbulence initially excited at large scales, we characterize a transition of the inertial energy-spectrum exponent from n ≈— 4 at early times to n ≈ — 3 when the turbulence becomes more mature. In physical space, the first regime is associated with isolated vorticity-gradient sheets, as predicted by Saffman (1971). The second regime, which is essentially statistical, corresponds to an enstrophy cascade (Kraichnan 1967; Batchelor 1969) and reflects the formation of layers resulting from the packing of vorticity-gradient sheets. In addition to these small-scale structures, the simulation displays vorticity macro-eddies which will survive long after the vorticity-gradient layers have been dissipated (McWilliams 1984). We validate the linear description of two-dimensional turbulence suggested by Weiss (1981), which predicts that coherent vortices will survive in regions where vorticity dominates strain, while vorticity-gradient sheets will be formed in regions where strain dominates. We show that this analysis remains valid even after vorticity-gradient sheets have been formed. © 1988, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-03-01
    Description: This paper is a summary of the Fifth Beer-Sheva Seminar on Magnetohydrodynamic (MHD) Flows and Turbulence, held in Jerusalem during 2–6 March 1987, with 99 participants from 12 countries. Reviews and research papers were presented on general problems of turbulence, MHD turbulence, fundamental MHD, two-phase flows with and without magnetic fields, and on different applications of liquid-metal MHD, especially in power generation nuclear fission and fusion, and in metallurgy. © 1988, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-08-01
    Description: The existence of an inverse cascade is demonstrated for three-dimensional incompressible flow displaying the Anisotropic Kinetic Alpha (AKA) instability (Frisch, She & Sulem). By means of full three-dimensional simulations of the Navier-Stokes equations, it is shown that flow stirred at small scales by an anisotropic force lacking parity-invariance (i.e. lacking any centre of symmetry) can generate strongly helical structures on larger scales. When there is a substantial range of linearly unstable modes, the most unstable ones emerge at first, but are eventually dominated by modes with the smallest wavenumbers. The key observation for the theory of this inverse cascade is that, in the presence of forcing, the small-scale Reynolds stresses will become dependent on the large-scale flow. Elimination of the small scales produces the nonlinear AKA equations for the large-scale flow. The latter have non-trivial one-dimensional solutions also displaying an inverse cascade, qualitatively similar to the one reported above. This cascade has been numerically simulated over a range of more than two decades. For a simple choice of the forcing, a steady state is eventually reached; it can be described analytically and presents interesting geometric features in the limit of very extended systems. The corresponding energy spectrum has a k-4range. A number of other scaling relations are also derived. The multi-dimensional extension of the theory is briefly considered. The resulting large-scale structures are conjectured to correspond to solutions of the incompressible Euler equation. © 1989, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...