ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-05-01
    Description: It is shown that the Rayleigh-Taylor instability of an accelerating incompressible, inviscid fluid layer is the result of pressure gradients, not gravitational acceleration. As in the classical Rayleigh-Taylor instability of a semi-infinite layer, finite fluid layers form long thin spikes whose structure is essentially independent of the initial thickness of the layer. A pressure maximum develops above the spike that effectively uncouples the flow in the spike from the rest of the fluid. Interspersed between the spikes are rising bubbles. The bubble motion is seriously affected by the thickness of the layer. For thin layers, the bubbles accelerate upwards exponentially in time and the layer thins so rapidly that it may disrupt at finite times. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...