ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (22)
  • 1
    Publication Date: 2000-09-10
    Description: A laboratory study was carried out to directly measure the turbulence properties in a benthic boundary layer (BBL) above a uniformly sloping bottom where the BBL is energized by internal waves. The ambient fluid was continuously stratified and the steadily forced incoming wave field consisted of a confined beam, restricting the turbulent activity to a finite region along the bottom slope. Measurements of dissipation showed some variation over the wave phase, but cycle-averaged values indicated that the dissipation was nearly constant with height within the BBL. Dissipation levels were up to three orders of magnitude larger than background laminar values and the thickness of the BBL could be defined in terms of the observed dissipation variation with height. Assuming that most of the incoming wave energy was dissipated within the BBL, predicted levels of dissipation were in good agreement with the observations. Measurements were also made of density and two orthogonal components of the velocity fluctuations at discrete heights above the bottom. Cospectral estimates of density and velocity fluctuations showed that the major contributions to both the vertical density flux and the momentum flux resulted from frequencies near the wave forcing frequency, rather than super-buoyancy frequencies, suggesting a strong nonlinear interaction between the incident and reflected waves close to the bottom. Within the turbulent BBL, time-averaged density fluxes were significant and negative near the wave frequencies but negligible at frequencies greater than the buoyancy frequency N. While dissipation rates were high compared to background laminar values, they were low compared to the value of ε(tr) ~ 15 ν N2, the transition value often used to assess the capacity of a stratified flow to produce mixing. Existing models relating mixing to dissipation rate rely on the existence of a positive-definite density flux at frequencies greater than N as a signature of fluid mixing and therefore cannot apply to these experiments. We therefore introduce a simple model, based on the concept of diascalar fluxes, to interpret the mixing in the stratified fluid in the BBL and suggest that this may have wider application than to the particular configuration studied here.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-01-10
    Description: If a sill-enclosed basin, connected to a large reservoir, is suddenly subjected to a de-stabilizing surface buoyancy flux, it will first mix vertically by turbulent convection before the resulting lateral buoyancy gradient generates a horizontal exchange flow across the sill. We present a study which examines the unsteady adjustment of such a basin under continued steady forcing. It is shown, through theoretical development and laboratory experimentation, that two consecutive unsteady regimes characterized by different dynamic balances are traversed as the flow approaches a steady state. Once established the exchange flow is controlled at the sill crest where it is hydraulically critical. In the absence of a lateral contraction, the single control at the sill crest allows a range of submaximal exchange states with the flow at the sill being dependent not only on the forcing and geometrical parameters but also on mixing conditions within the basin which are, in turn, dependent on the sill exchange. The sill-basin system is therefore strongly coupled although it remains isolated from the external reservoir conditions by a region of internally supercritical flow. Results from the laboratory experiments are used to demonstrate the link between the forcing and the exchange flow at the sill. Steady-state measurements of the interior mean velocity and buoyancy fields are also compared with previous analytical models.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-09-10
    Description: Laboratory experiments are used to investigate the processes governing steady convectively driven circulation in a basin that communicates with a large external reservoir over a shallow sill. The motion is maintained by a steady loss of buoyancy distributed over the surface of the basin. Turbulent convection associated with the forcing produces a horizontal buoyancy gradient across the sill and the resulting mean flow consists of a layer directed into the basin near the surface with a dense counterflow below. To first order, the magnitude of the exchange flow over the sill is determined by the horizontal momentum balance within the basin. Measurements of the mean and turbulent flow fields are used to show that inertia, buoyancy and friction may each contribute significantly to the balance. The interior flow produces a horizontal pressure gradient near the surface which must also contribute to the momentum balance. The density of the lower layer at the sill reflects the cumulative effect of interior processes, such as mixing, and these in turn influence the hydraulically controlled exchange flow over the sill. The basin dynamics are therefore coupled in a nonlinear fashion with the submaximal sill exchange. This coupling is investigated first by showing how interior processes are affected by changes in the magnitude of the forcing, and then by observing the associated variation of the flow state at the sill. The flow state is defined in terms of its relative proximity to the theoretical maximal exchange limit. Results show that the exchange flows are submaximal with flow rate approximately 85% of the maximal limit. This state appears to change very little in response to increasing forcing. For a stratified basin, which exhibits a deep stagnant layer under the convectively driven near-surface exchange flow, the possibility of basin ventilation or erosion of deep fluid exists in the long term. This process and its dependence on external parameters is also explored.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-02-01
    Description: A laboratory investigation of exchange flows near the two-layer hydraulic limit is used to examine the generation of shear instability at the interface dividing the two layers. The present experiments differ from many previous investigations into shear instability, in that the instabilities are an active part of a quasi-steady flow regime rather than the product of a controlled initial state. Regimes characterized by either Kelvin-Helmholtz or Holmboe's instability are found to be separated by a well-defined transition. Observations of the transition from Kelvin-Helmholtz to Holmboe's instability are compared to predictions from scaling arguments that draw on elements of both two-layer hydraulic theory and linear stability theory. The characteristics of unstable modes near the transition, and the structure of both classes of instability are examined in detail.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-10-30
    Description: Internal hydraulic theory is often used to describe idealized bi-directional exchange flow through a constricted channel. This approach is formally applicable to layered flows in which velocity and density are represented by discontinuous functions that are constant within discrete layers. The theory relies on the determination of flow conditions at points of hydraulic control, where long interfacial waves have zero phase speed. In this paper, we consider hydraulic control in continuously stratified exchange flows. Such flows occur, for example, in channels connecting stratified reservoirs and between homogeneous basins when interfacial mixing is significant. Our focus here is on the propagation characteristics of the gravest vertical-mode internal waves within a laterally contracting channel. Two approaches are used to determine the behaviour of waves propagating through a steady, continuously sheared and stratified exchange flow. In the first, waves are mechanically excited at discrete locations within a numerically simulated bi-directional exchange flow and allowed to evolve under linear dynamics. These waves are then tracked in space and time to determine propagation speeds. A second approach, based on the stability theory of parallel shear flows and examination of solutions to a sixth-order eigenvalue problem, is used to interpret the direct excitation experiments. Two types of gravest mode eigensolutions are identified: vorticity modes, with eigenfunction maxima centred above and below the region of maximum density gradient, and density modes with maxima centred on the strongly stratified layer. Density modes have phase speeds that change sign within the channel and are analogous to the interfacial waves in hydraulic theory. Vorticity modes have finite propagation speed throughout the channel but undergo a transition in form: upwind of the transition point the vorticity mode is trapped in one layer. It is argued that modes trapped in one layer are not capable of communicating interfacial information, and therefore that the transition points are analogous to control points. The location of transition points are identified and used to generalize the notion of hydraulic control in continuously stratified flows.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1982-08-01
    Description: A vertically oscillating grid is used to simulate boundary mixing in the laboratory. The oscillation of the grid creates a turbulent mixing region in its vicinity, and mixing within this region creates a step-like structure in an initial density distribution which varies linearly with depth. If the initial density varies only at the boundary between two homogeneous layers, the same grid turbulence generates additional steps above and below the initial one. The steps, in turn, drive multiple intrusions of mixed fluid away from the boundary and into the non-turbulent interior of the fluid. A compensating return flow carries fluid from the interior into the turbulent mixing region. From the data, the inference is made that the intrusions make a negligible direct contribution to the vertical mass transport. An analytical model of the intrusions, which employs only molecular values of the transport coefficients and also demonstrates negligible vertical mass transport, is consissent with the laboratory observations. Nevertheless, the data indicate that the fluid eventually reaches a homogeneous density by means of the gradual change of the gradient a t a rate which is essentially the same both near the grid and far from it. For an initially uniform density profile this change occurs at all heights simultaneously, and for an initial density step it occurs preferentially near the step. Thus in both cases the interior flow must include slow vertical advection away from the horizontal centre plane. These advective currents can be made part of a consistent dynamic model, the buoyant equivalent of the spindown in a rotating flow, provided that the net effect of the grid mixing includes a decrease in the local slope of the density gradient. This mode of adjustment explains satisfactorily the experimentally observed negligible horizontal density gradients. For the case of an initially uniform density stratification, the shape of the evolving density gradient is not accounted for. In particular, it is not clear why the gradient changes at mid-depth almost simultaneously with variations at top and bottom boundaries. The vertical mass flux is found to be independent of container length, and it increases with grid frequency of oscillation, amplitude of oscillation and with the mean density gradient. © 1982, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1984-07-01
    Description: A laboratory experiment is used to study the transient flow in an initially isothermal cavity at temperature T0 following the rapid change of the two vertical endwalls to temperatures T0± ΔT respectively. Individual temperature records are taken and the transient flow in the entire cavity is visualized with the aid of a tracer technique. It is shown that an oscillatory approach to final steady state conditions exists for certain flow regimes, although the form of the oscillatory response is different to that suggested by previous work. It is argued that this oscillatory behaviour is due to the inertia of the flow entering the interior of the cavity from the sidewall boundary layers, which may lead to a form of internal hydraulic jump if the Rayleigh number is sufficiently large. © 1984, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-04-10
    Description: Laboratory experiments were conducted to study the interaction between two downward propagating internal wave rays with identical properties but opposite horizontal phase velocities. The intersection of the rays produced a velocity field with stagnation points, and these points propagated vertically upwards within the intersection region. Nonlinear non-resonant interactions between the two rays produced evanescent modes, with frequencies greater than the ambient buoyancy frequency, trapped within the intersection region. These evanescent modes provided a mechanism whereby energy could accumulate locally and, even though the vertical wavelength of the primary resultant wave remained the same, the local isopycnal displacements increased in time. Eventually, the isopycnals were forced to overturn in the region just above the stagnation points by the variation with depth in the local horizontal strain rate. The gravitationally unstable overturning ultimately broke down releasing its available potential energy and generating turbulence within the intersection region. The results showed that the release of available potential energy was disrupted by the wave motions and even the dissipative scales were directly affected by the ambient stratification and the background wave motion. The distribution of the centred displacement scales was highly skewed towards the Kolmogorov scale and the turbulent Reynolds number Ret was low. Thus, the net buoyancy flux was very small and almost all turbulent kinetic energy was dissipated over the parameter range investigated. The results also showed that for such dissipative events the square of the strain Froude number (ε/νN20) and the turbulent Reynolds number Ret can be less than one.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-08-10
    Description: Horizontal exchange flows driven by spatial variation of buoyancy fluxes through the water surface are found in a variety of geophysical situations. In all examples of such flows the timescale characterizing the variability of the buoyancy fluxes is important and it can vary greatly in magnitude. In this laboratory study we focus on the effects of this unsteadiness of the buoyancy forcing and its influence on the resulting flushing and circulation processes in a cavity. The experiments described all start with destabilizing forcing of the flows, but the buoyancy fluxes are switched to stabilizing forcing at three different times spanning the major timescales characterizing the resulting cavity-scale flows. For destabilizing forcing, these timescales are the flushing time of the region of forcing, and the filling-box timescale, the time for the cavity-scale flow to reach steady state. When the forcing is stabilizing, the major timescale is the time for the fluid in the exchange flow to pass once through the forcing boundary layer. This too is a measure of the time to reach steady state, but it is generally distinct from the filling-box time. When a switch is made from destabilizing to stabilizing buoyancy flux, inertia is important and affects the approach to steady state of the subsequent flow. Velocities of the discharges from the end regions, whether forced in destabilizing or stabilizing ways, scaled as u ∼ (Bl)1/3 (where B is the forcing buoyancy flux and l is the length of the forcing region) in accordance with Phillips' (1966) results. Discharges with destabilizing and stabilizing forcing were, respectively, Q_ ∼ (Bl)1/3H and Q+ ∼ (Bl)l/3δ (where H is the depth below or above the forcing plate and δ is the boundary layer thickness). Thus Q_/Q+ 〉 0(1) provided H 〉 O(δ), as was certainly the case in the experiments reported, demonstrating the overall importance of the flushing processes occurring during periods of cooling or destabilizing forcing.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-11-16
    Description: An extended Korteweg-de Vries (KdV) equation is derived that describes the evolution and propagation of long interfacial gravity waves in the presence of a strong, space-time varying background. Provision is made in the derivation for a spatially varying lower depth so that some topographic effects can also be included. The extended KdV model is applied to some simple scenarios in basins of constant and varying depths, using approximate expressions for the variable coefficients derived for the case when the background field is composed of a moderate-amplitude ultra-long wave. The model shows that energy can be transferred either to or from the evolving wave packet depending on the relative phases of the evolving waves and the background variation. Comparison of the model with laboratory experiments confirms its applicability and usefulness in examining the evolution of weakly nonlinear waves in natural systems where the background state is rarely uniform or steady.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...