ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-08
    Description: The stabilization of a swept-wing boundary layer by distributed surface roughness elements is studied by performing direct numerical simulations. The configuration resembles experiments studied by Saric and coworkers at Arizona State University, who employed this control method in order to delay transition. An array of cylindrical roughness elements are placed near the leading edge to excite subcritical cross-flow modes. Subcritical refers to the modes that are not critical with respect to transition. Their amplification to nonlinear amplitudes modifies the base flow such that the most unstable cross-flow mode and secondary instabilities are damped, resulting in downstream shift of the transition location. The experiments by Saric and coworkers were performed at low levels of free stream turbulence, and the boundary layer was therefore dominated by stationary cross-flow disturbances. Here, we consider a more complex disturbance field, which comprises both steady and unsteady instabilities of similar amplitudes. It is demonstrated that the control is robust with respect to complex disturbance fields as transition is shifted from 45 to 65 % chord. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-04
    Description: The global non-modal stability of the flow in a right-angled streamwise corner is investigated. Spatially confined linear optimal initial conditions and responses are obtained by use of direct-adjoint looping. Two base states are considered, the classical self-similar solution for a zero streamwise pressure gradient, and a modified solution that mimics leading-edge effects commonly observed in experimental studies. The latter solution is obtained in a reverse engineering fashion from published measurement data. Prior to the global analysis, a classical local linear stability and sensitivity analysis of both base states is conducted. It is found that the base-flow modification drastically reduces the critical Reynolds number through an inviscid mechanism, the so-called corner mode. A survey of the geometry of the two base states confirms that the modification greatly aggravates the inflectional nature of the flow. Global optimals are calculated for subcritical and supercritical Reynolds numbers, and for two finite optimization times. The optimal initial conditions are found to be self-confined in the spanwise directions, and symmetric with respect to the corner bisector. They evolve into streaks or streamwise modulated wavepackets, depending on the base state. Substantial transient growth caused by the Orr mechanism and the lift-up effect is observed. © © 2015 Cambridge University Pressa.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...