ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Streaks have been found to be an important part of wall-turbulence dynamics. In this paper, we extend the analysis for unbounded shear flows, in particular a Mach 0.4 round jet, using measurements taken using dual-plane, time-resolved, stereoscopic particle image velocimetry (PIV) taken at pairs of jet cross-sections, allowing the evaluation of the cross-spectral density of streamwise velocity fluctuations resolved into azimuthal Fourier modes. From the streamwise velocity results, two analyses are performed: the evaluation of wavenumber spectra (assuming Taylor’s hypothesis for the streamwise coordinate) and a spectral proper orthogonal decomposition (SPOD) of the velocity field using PIV planes in several axial stations. The methods complement each other, leading to the conclusion that large-scale streaky structures are also present in turbulent jets where they experience large growth in the streamwise direction, energetic structures extending up to eight diameters from the nozzle exit. Leading SPOD modes highlight the large-scale, streaky shape of the structures, whose aspect ratio (streamwise over azimuthal length) is approximately 15. The data were further analysed using SPOD, resolvent and transient growth analyses, good agreement being observed between the models and the leading SPOD mode for the wavenumbers considered. The models also indicate that the lift-up mechanism is active in turbulent jets, with streamwise vortices leading to streaks. The results show that large-scale streaks are a relevant part of the jet dynamics.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Motivated by recent studies that have revealed the existence of trapped acoustic waves in subsonic jets (Towne 〈span〉et al.〈/span〉, 〈span〉J. Fluid Mech.〈/span〉, vol. 825, 2017, pp. 1113–1152), we undertake a more general exploration of the physics associated with acoustic modes in jets and wakes, using a double vortex-sheet model. These acoustic modes are associated with eigenvalues of the vortex-sheet dispersion relation; they are discrete modes, guided by the vortex sheet; they may be either propagative or evanescent; and under certain conditions they behave in the manner of acoustic-duct modes. By analysing these modes we show how jets and wakes may both behave as waveguides under certain conditions, emulating ducts with soft or hard walls, with the vortex-sheet impedance providing effective ‘wall’ conditions. We consider, in particular, the role that upstream-travelling acoustic modes play in the dispersion-relation saddle points that underpin the onset of absolute instability. The analysis illustrates how departure from duct-like behaviour is a necessary condition for absolute instability, and this provides a new perspective on the stabilising and destabilising effects of reverse flow, temperature ratio and compressibility; it also clarifies the differing symmetries of jet (symmetric) and wake (antisymmetric) instabilities. An energy balance, based on the vortex-sheet impedance, is used to determine stability conditions for the acoustic modes: these may become unstable in supersonic flow due to an energy influx through the shear layers. Finally, we construct the impulse response of flows with zero and finite shear-layer thickness. This allows us to show how the long-time wavepacket behaviour is indeed determined by interaction between Kelvin–Helmholtz and acoustic modes.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-01
    Description: Analyses of shallow cores obtained at the European Project for Ice Coring in Antarctica (EPICA) drilling site Kohnen station (75°00′ S, 00°04′ E; 2892 m a.s.l.) on the plateau of Dronning Maud Land reveal the presence of conserved snow dunes in the firn. In situ observations during three dune formation events in the 2005/06 austral summer at Kohnen station show that these periods were characterized by a phase of 2 or 3 days with snowdrift prior to dune formation which only occurred during high wind speeds of 〉10 m s-1 at 2 m height caused by the influence of a low-pressure system. The dune surface coverage after a formation event varied between 5% and 15%, with a typical dune size of (4 ± 2) m × (8 ± 3) m, a maximum height of 0.2 ± 0.1 m and a periodicity length of about 30 m. The mean density within a snow dune varied between 380 and 500 kg m-3, whereas the mean density at the surrounding surface was 330 ± 5 kgm-3. The firn cores covering a time-span of 22 ± 2 years reveal that approximately three to eight events per year occurred, during which snow dunes had been formed and were preserved in the firn.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-01
    Description: Interactions between Antarctic sea ice and synoptic activity in the circumpolar trough have been investigated using meteorological data from European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis and sea-ice data from passive-microwave measurements. Total Antarctic sea-ice extent does not show large interannual variations. However, large differences are observed on a regional/monthly scale, depending on prevailing winds and currents, and thus on the prevailing synoptic situations. the sea-ice edge is also a preferred region for cyclogenesis due to the strong meridional temperature gradient (high baroclinicity) in that area. the motivation for this study was to gain a better understanding of the interaction between sea-ice extent and the general atmospheric flow, particularly the frequency of warm-air intrusions into the interior of the Antarctic continent, since this influences precipitation seasonality and must be taken into account for a correct climatic interpretation of ice cores. Two case studies of extraordinary sea-ice concentration anomalies in relation to the prevailing atmospheric conditions are presented. However, both strong positive and negative anomalies can be related to warm biases in ice cores (indicated by stable-isotope ratios), especially in connection with the negative phase of the Southern Annular Mode.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...