ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-06-10
    Description: Experimental investigations in the three-dimensional boundary layer of a swept flat plate with the pressure gradient induced from outside are aimed at enhancing knowledge of the transition process in the presence of pure crossflow instability. The development of disturbances is characterized by the occurrence of both stationary and travelling instability modes, by early nonlinear development and by complex dependence upon the environmental conditions. Experiments under natural conditions of transition showed a good correspondence of the identified modes with those predicted by local linear stability theory. The disturbance growth, however, is generally overpredicted. Controlled excitation of crossflow vortices allowing measurements closer to the linear range of amplification confirmed this result. Nonlinear effects such as interaction between stationary disturbances and base flow and between travelling and stationary modes have already been observed when the naturally excited instabilities become of measurable size. The most striking feature of the disturbance development is the complex dependence on initial conditions. Experiments under systematically varied environments showed that surface roughness represents the key parameter responsible for the initiation of stationary crossflow vortices. In contrast to two-dimensional boundary layers, free-stream turbulence influences the transition process indirectly. Only for turbulence levels Tu 〉 0.2% and smooth surfaces do the travelling instability waves dominate. The location of the final breakdown of laminar flow is clearly determined by the saturation amplitude of crossflow vortices. The receptivity to sound, two-dimensional surface roughness and non-uniformities of the test-section mean flow was found to be very weak.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...