ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-07-25
    Description: Large-scale structures in a plane turbulent mixing layer are studied through the use of the proper orthogonal decomposition (POD). Extensive experimental measurements are obtained in a turbulent plane mixing layer by means of two cross-wire rakes aligned normal to the direction of the mean shear and perpendicular to the mean flow direction. The measurements are acquired well into the asymptotic region. From the measured velocities the two-point spectral tensor is calculated as a function of separation in the cross-stream direction and spanwise and streamwise wavenumbers. The continuity equation is then used for the calculation of the non-measured components of the tensor. The POD is applied using the cross-spectral tensor as its kernel. This decomposition yields an optimal basis set in the mean square sense. The energy contained in the POD modes converges rapidly with the first mode being dominant (49% of the turbulent kinetic energy). Examination of these modes shows that the first mode contains evidence of both known flow organizations in the mixing layer, i.e. quasi-two-dimensional spanwise structures and streamwise aligned vortices. Using the shot-noise theory the dominant mode of the POD is transformed back into physical space. This structure is also indicative of the known flow organizations.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-15
    Description: The temporal dynamics of large-scale structures in a plane turbulent mixing layer are studied through the development of a low-order dynamical system of ordinary differential equations (ODEs). This model is derived by projecting Navier-Strokes equations onto an empirical basis set from the proper orthogonal decomposition (POD) using a Galerkin method. To obtain this low-dimensional set of equations, a truncation is performed that only includes the first POD mode for selected streamwise/ spanwise (k1/k3) modes. The initial truncations are for k3 = 0; however, once these truncations are evaluated, non-zero spanwise wavenumbers are added. These truncated systems of equations are then examined in the pseudo-Fourier space in which they are solved and by reconstructing the velocity field. Two different methods for closing the mean streamwise velocity are evaluated that show the importance of introducing, into the low-order dynamical system, a term allowing feedback between the turbulent and mean flows. The results of the numerical simulations show a strongly periodic flow indicative of the spanwise vorticity. The simulated flow had the correct energy distributions in the cross-stream direction. These models also indicated that the events associated with the centre of the mixing layer lead the temporal dynamics. For truncations involving both spanwise and streamwise wavenumbers, the reconstructed velocity field exhibits the main spanwise and streamwise vortical structures known to exist in this flow. The streamwise aligned vorticity is shown to connect spanwise vortex tubes.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-31
    Description: This work belongs to the ongoing debate surrounding the mechanism responsible for low-angle sound emission from subsonic jets. The flow, simulated by large eddy simulation (Bogey & Bailly, Comput. Fluids, vol. 35 (10), 2006a, pp. 1344–1358), is a Mach 0.9 jet with Reynolds number, based on the exit diameter, of $4ensuremath{imes} 1{0}^{5} $. A methodology is implemented to educe, explore and model the flow motions associated with low-angle sound radiation. The eduction procedure, which is based on frequency–wavenumber filtering of the sound field and subsequent conditional analysis of the turbulent jet, provides access to space- and time-dependent (hydrodynamic) pressure and velocity fields. Analysis of these shows the low-angle sound emission to be underpinned by dynamics comprising space and time modulation of axially coherent wavepackets: temporally localized energization of wavepackets is observed to be correlated with the generation of high-amplitude acoustic bursts. Quantitative validation is provided by means of a simplified line-source Ansatz (Cavalieri et al. J. Sound Vib., vol. 330, 2011b, pp. 4474–4492). The dynamic nature of the educed field is then assessed using linear stability theory (LST). The educed pressure and velocity fields are found to compare well with LST: the radial structures of these match the corresponding LST eigenfunctions; the axial evolutions of their fluctuation energy are consistent with the LST amplification rates; and the relative amplitudes of the pressure and velocity fluctuations, which are educed independently of one another, are consistent with LST.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-18
    Description: We study flows and interface deformations produced by the scattering of a laser beam propagating through non-absorbing turbid fluids. Light scattering produces a force density resulting from the transfer of linear momentum from the laser to the scatterers. The flow induced in the direction of the beam propagation, called optical streaming, is also able to deform the interface separating the two liquid phases and to produce wide humps. The viscous flow taking place in these two liquid layers is solved analytically, in one of the two liquid layers with a stream function formulation, as well as numerically in both fluids using a boundary integral element method. Quantitative comparisons are shown between the numerical and analytical flow patterns. Moreover, we present predictive simulations regarding the effects of the geometry, of the scattering strength and of the viscosities, on both the flow pattern and the deformation of the interface. Finally, theoretical arguments are put forth to explain the robustness of the emergence of secondary flows in a two-layer fluid system. © 2011 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-26
    Description: We present an analytical model of the time-dependent, small-amplitude deformation of a free liquid surface caused by a spatially localized, axisymmetric, pulsed or continuous, acoustic or electromagnetic radiation pressure exerted on the surface. By exactly solving the unsteady Stokes equation, we predict the surface dynamics in all dynamic regimes, namely inertial, intermediate and strongly damped regimes. We demonstrate the validity of this model in all dynamic regimes by comparing its prediction to experiments consisting of optically measuring the time-dependent curvature of the tip of a hump created at a liquid surface by the radiation pressure of an acoustic pulse. Finally, we present a numerical scheme simulating the behaviour of a fluid-fluid interface subjected to a time-dependent radiation pressure and show its accuracy by comparing the numerical predictions with the analytical model in the intermediate and strongly damped regimes. © Cambridge University Press 2011.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-06
    Description: Abstract By examining the rupture of fluid necks during droplet formation of surfactant-laden liquids, we observe deviations from expected behaviour for the pinch-off of such necks. We suggest that these deviations are due to the presence of a dynamic (time-varying) interfacial tension at the minimum neck location and extract this quantity from our measurements on a variety of systems. The presence of such dynamic interfacial tension effects should change the rupture process drastically. However, our measurements show that a simple ansatz, which incorporates the temporal change of the interfacial tension, allows us to understand the dynamics of thinning. This shows that this dynamics is largely independent of the exact details of what happens far from the breakup location, pointing to the local nature of the thinning dynamics. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-15
    Description: We report on the direct experimental observation of laser-induced flows in isotropic liquids that scatter light. We use a droplet microemulsion in the two-phase regime, which behaves like a binary mixture. Close to its critical consolute line, the microemulsion undergoes large refractive index fluctuations that scatter light. The radiation pressure of a laser beam is focused onto the soft interface between the two phases of the microemulsion and induces a cylindrical liquid jet that continuously emits droplets. We demonstrate that this dripping phenomenon takes place as a consequence of a steady flow induced by the transfer of linear momentum from the optical field to the liquid due to light scattering. We first show that the cylindrical jet guides light as a step-index liquid optical fiber whose core diameter is self-adapted to the light itself. Then, by modelling the light-induced flow as a low-Reynolds-number, parallel flow, we predict the dependence of the dripping flow rate on the thermophysical properties of the microemulsion and the laser beam power. Satisfying agreement is found between the model and experiments. © 2010 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...