ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (2)
  • 1
    Publication Date: 1994-01-25
    Description: An experimental study of the interaction of weak shock waves in a liquid with bubbles and solid particles has been conducted. Cavities were punched, and solid particles were cast, into a thin sheet of gelatine clamped between two transparent blocks. A shock of pressure 0.3 GPa was introduced by impacting the gelatine layer with a flyer plate. The subsequent collapse of the cavities was photographed using high-speed framing cameras, and waves in the gelatine were visualized using schlieren optics. Assorted cavity/particle geometries were studied. In the first, cavity and particle were aligned on an axis parallel to the incident shock front. The jet crossing the cavity was found to deviate from the perpendicular to the shock front. This deviation was towards the solid particle when separations were small and away from the particle when separations were increased. When a cavity was placed upstream of a solid particle the collapse time was reduced. Conversely, when a cavity was placed downstream of a solid particle, collapse time was increased and the closure was more symmetrical. These observations were explained in terms of wave reflections. Collapses where the cavity/particle axis was inclined to the incident shock showed features of each of the geometries described above. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-11-01
    Description: A two-dimensional method was used to observe the interactions of plane shock waves with single cavities. This allowed study of processes occurring within the cavity during collapse. Results were obtained from high-speed framing photography. A variety of collapse shock pressures were launched into thin liquid sheets either by firing a rectangular projectile or by using an explosive plane-wave generator. The range of these shock pressures was from 0.3 to 3.5 GPa. Cavities were found to collapse asymmetrically to produce a high-speed liquid jet which was of approximately constant velocity at low shock pressures. At high pressures, the jet was found to accelerate and crossed the cavity faster than the collapse-shock traversed the same distance in the liquid. In the final moments of collapse, high temperatures were concentrated in two lobes of trapped gas and light emission was observed from these regions. Other cavity shapes were studied and in the case of cavities with flat rear walls, multiple jets were observed to form during the collapse. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...