ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (8)
  • 1
    Publication Date: 1995-06-25
    Description: Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briançon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities. In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-12-25
    Description: Experiments were conducted to measure the collisional particle pressure in both cocurrent and countercurrent flows of liquid-solid mixtures. The collisional particle pressure, or granular pressure, is the additional pressure exerted on the containing walls of a particulate system due to the particle collisions. The present experiments involve both a liquid-fluidized bed using glass, plastic or steel spheres and a vertical gravity-driven flow using glass spheres. The particle pressure was measured using a high-frequency-response flush-mounted pressure transducer. Detailed recordings were made of many different particle collisions with the active face of this transducer. The solids fraction of the flowing mixtures was measured using an impedance volume fraction meter. Results show that the magnitude of the measured particle pressure increases from low concentrations (〈10% solid volume fraction), reaches a maximum for intermediate values of solid fraction (30-40%), and decreases again for more concentrated mixtures (〉40%). The measured collisional particle pressure appears to scale with the particle dynamic pressure based on the particle density and terminal velocity. Results were obtained and compared for a range of particle sizes, as well as for two different test section diameters. In addition, a detailed analysis of the collisions was performed that included the probability density functions for the collision duration and collision impulse. Two distinct contributions to the collisional particle pressure were identified: one contribution from direct contact of particles with the pressure transducer, and the second one resulting from particle collisions in the bulk that are transmitted through the liquid to the pressure transducer.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-01-25
    Description: This paper describes an investigation of the dynamics and acoustics of cloud cavitation, the structures which are often formed by the periodic breakup and collapse of a sheet or vortex cavity. This form of cavitation frequently causes severe noise and damage, though the precise mechanism responsible for the enhancement of these adverse effects is not fully understood. In this paper, we investigate the large impulsive surface pressures generated by this type of cavitation and correlate these with the images from high-speed motion pictures. This reveals that several types of propagating structures (shock waves) are formed in a collapsing cloud and dictate the dynamics and acoustics of collapse. One type of shock wave structure is associated with the coherent collapse of a well-defined and separate cloud when it is convected into a region of higher pressure. This type of global structure causes the largest impulsive pressures and radiated noise. But two other types of structure, termed 'crescent-shaped regions' and leading-edge structures' occur during the less-coherent collapse of clouds. These local events are smaller and therefore produce less radiated noise but the interior pressure pulse magnitudes are almost as large as those produced by the global events. The ubiquity and severity of these propagating shock wave structures provides a new perspective on the mechanisms reponsible for noise and damage in cavitating flows involving clouds of bubbles. It would appear that shock wave dynamics rather than the collapse dynamics of single bubbles determine the damage and noise in many cavitating flows.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-05-10
    Description: This study details experiments investigating a previously unrecognized surge instability on a cavitating propeller in a water tunnel. The surge instability is explored through visual observation of the cavitation on the propeller blades and in the tip vortices. Similarities between the instability and previously documented cavitation phenomena are noted. Measurements of the radiated pressure are obtained, and the acoustic signature of the instability is identified. The magnitudes of the fluctuating pressures are very large, presumably capable of producing severe hull vibration on a ship. The origins of this instability are explored through separate investigation of the cavitation dynamics and the response of the water tunnel to volumetric displacement in the working section. Experiments are conducted to quantify the dynamics of the propeller cavitation. Finally, a model is developed for the complete system, incorporating both the cavitation and facility dynamics. The model predicts active system dynamics (linked to the mass flow gain factor familiar in the context of pump dynamics) and therefore potentially unstable behaviour for two distinct frequency ranges, one of which appears to be responsible for the instability.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-02-10
    Description: In 1954 R. A. Bagnold published his seminal findings on the rheological properties of a liquid-solid suspension. Although this work has been cited extensively over the last fifty years, there has not been a critical review of the experiments. The purpose of this study is to examine the work and to suggest an alternative reason for the experimental findings. The concentric cylinder rheometer was designed to measure simultaneously the shear and normal forces for a wide range of solid concentrations, fluid viscosities and shear rates. As presented by Bagnold, the analysis and experiments demonstrated that the shear and normal forces depended linearly on the shear rate in the 'macroviscous' regime; as the grain-to-grain interactions increased in the 'grain-inertia' regime, the stresses depended on the square of the shear rate and were independent of the fluid viscosity. These results, however, appear to be dictated by the design of the experimental facility. In Bagnold's experiments, the height (h) of the rheometer was relatively short compared to the spacing (t) between the rotating outer and stationary inner cylinder (h/t = 4.6). Since the top and bottom end plates rotated with the outer cylinder, the flow contained two axisymmetric counter-rotating cells in which flow moved outward along the end plates and inward through the central region of the annulus. At higher Reynolds numbers, these cells contributed significantly to the measured torque, as demonstrated by comparing Bagnold's pure-fluid measurements with studies on laminar-to-turbulent transitions that pre-date the 1954 study. By accounting for the torque along the end walls, Bagnold's shear stress measurements can be estimated by modelling the liquid-solid mixture as a Newtonian fluid with a corrected viscosity that depends on the solids concentration. An analysis of the normal stress measurements was problematic because the gross measurements were not reported and could not be obtained.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-12-01
    Description: Individual travelling cavitation bubbles generated on two axisymmetric headforms were detected using a surface electrode probe. The growth and collapse of the bubbles were studied photographically, and these observations are related to the pressure fields and viscous flow patterns associated with each headform. Measurements of the acoustic impulse generated by the bubble collapse are analysed and found to correlate with the maximum volume of the bubble for each headform. These results are compared to the observed bubble dynamics and numerical solutions of the Rayleigh-Plesset equation. Finally, the cavitation nuclei flux was measured and predicted cavitation event rates and bubble maximum size distributions are compared with the measurements of these quantities. © 1991, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-06
    Description: This paper explores the phenomena associated with the emergence of gas bubbles from a submerged granular bed. While there are many natural and industrial applications, we focus on the particular circumstances and consequences associated with the emergence of methane bubbles from the beds of lakes and reservoirs since there are significant implications for the dynamics of lakes and reservoirs and for global warming. This paper describes an experimental study of the processes of bubble emergence from a granular bed. Two distinct emergence modes are identified, mode 1 being simply the percolation of small bubbles through the interstices of the bed, while mode 2 involves the cumulative growth of a larger bubble until its buoyancy overcomes the surface tension effects. We demonstrate the conditions dividing the two modes (primarily the grain size) and show that this accords with simple analytical evaluations. These observations are consistent with previous studies of the dynamics of bubbles within porous beds. The two emergence modes also induce quite different particle fluidization levels. The latter are measured and correlated with a diffusion model similar to that originally employed in river sedimentation models by Vanoni and others. Both the particle diffusivity and the particle flux at the surface of the granular bed are measured and compared with a simple analytical model. These mixing processes can be consider applicable not only to the grains themselves, but also to the nutrients and/or contaminants within the bed. In this respect they are shown to be much more powerful than other mixing processes (such as the turbulence in the benthic boundary layer) and could, therefore, play a dominant role in the dynamics of lakes and reservoirs.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-02-15
    Description: Shock propagation through a bubbly liquid contained in a deformable tube is considered. Quasi-one-dimensional mixture-averaged flow equations that include fluid-structure interaction are formulated. The steady shock relations are derived and the nonlinear effect due to the gas-phase compressibility is examined. Experiments are conducted in which a free-falling steel projectile impacts the top of an air/water mixture in a polycarbonate tube, and stress waves in the tube material and pressure on the tube wall are measured. The experimental data indicate that the linear theory is incapable of properly predicting the propagation speeds of finite-amplitude waves in a mixture-filled tube; the shock theory is found to more accurately estimate the measured wave speeds. © 2011 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...