ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (19)
  • Springer Nature  (2)
  • 1
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Results are presented from a laboratory study on the free-surface signal generated over an array of submerged circular cylinders, representative of submerged aquatic vegetation. We aim to understand whether aquatic ecosystems generate a surface signature that is indicative of both what is beneath the water surface as well as how it is altering the flow. A shear layer forms over the canopy, generating coherent vortex structures which eventually manifest in the free-surface slope field. We connect the vortex properties measured at the surface with measurements of the bulk flow, and show that correlations between these quantities are adequate to create a parameterized model in which the interior velocity profile can be predicted solely from measurements taken at the free surface. Experimental surface observations yield a Strouhal number that is twice the most amplified mode predicted by linear stability theory, suggesting that vortices may evolve between generation at the canopy height and their manifestation at the water surface. Additionally, the surface signal continues evolving with distance downstream, with vortices becoming spread farther apart and the passage frequency gradually decreasing. By the trailing edge of the canopy, surface-impacting boils emerge for canopies with higher submergence ratios, suggesting a transition from coherent two-dimensional rollers to transversely varying structures.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We investigate the interaction of a downslope gravity current with an internal wave propagating along a two-layer density jump. Direct numerical simulations confirm earlier experimental findings of a reduced gravity current mass flux, as well as the partial removal of the gravity current head from its body by large-amplitude waves (Hogg 〈span〉et al.〈/span〉, 〈span〉Environ. Fluid Mech.〈/span〉, vol. 18 (2), 2018, pp. 383–394). The current is observed to split into an intrusion of diluted fluid that propagates along the interface and a hyperpycnal current that continues to move downslope. The simulations provide detailed quantitative information on the energy budget components and the mixing dynamics of the current–wave interaction, which demonstrates the existence of two distinct parameter regimes. Small-amplitude waves affect the current in a largely transient fashion, so that the post-interaction properties of the current approach those in the absence of a wave. Large-amplitude waves, on the other hand, perform a sufficiently large amount of work on the gravity current fluid so as to modify its properties over the long term. The ‘decapitation’ of the current by large waves, along with the associated formation of an upslope current, enhance both viscous dissipation and irreversible mixing, thereby strongly reducing the available potential energy of the flow.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-13
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-21
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-06-10
    Description: Homogeneous sheared stratified turbulence was simulated using a DNS code. The initial turbulent Reynolds numbers (Re) were 22, 44, and 89, and the initial dimensionless shear rate (S(*)) varied from 2 to 16. We found (similarly to Rogers (1986) for unstratified flows) the final value of S(*) at high Re to be ~ 11, independent of initial S(*). The final S(*) varies at low Re, in agreement with Jacobitz et al. (1997). At low Re, the stationary Richardson number (Ri(s)) depends on both Re and S(*), but at higher Re, it varies only with Re. A scaling based on the turbulent kinetic energy equation which suggests this result employs instantaneous rather than initial values of flow parameters. At high Re the dissipation increases with applied shear, allowing a constant final S(*). The increased dissipation occurs primarily at high wavenumbers due to the stretching of eddies by stronger shear. For the high-Re stationary flows, the turbulent Froude number (Fr(t)) is a constant independent of S(*). An Fr(t)-based scaling predicts the final value of S(*) well over a range of Re. Therefore Fr(t) is a more appropriate parameter for describing the state of developed stratified turbulence than the gradient Richardson number.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-11-07
    Description: Laboratory experiments are carried out to determine the nature of internal wave breaking and the limiting wave steepness for progressive, periodic, lowest-mode internal waves in a two-layer, miscible density stratification. Shoaling effects are not considered. The waves investigated here are long relative to the thickness of the density interface separating the two fluid layers. Planar laser-induced fluoresence (PLIF) flow visualization shows that wave breaking most closely resembles a Kelvin-Helmholtz shear instability originating in the high-shear wave crest and trough regions. However, this instability is strongly temporally and spatially modified by the oscillations of the driving wave shear. Unlike a steady stratified shear layer, the wave instability discussed here is not governed by the canonical Ri = 1/4 stability limit. Instead, the wave time scale (the time scale of the destabilizing shear) imposes an additional constraint on instability, lowering the critical Richardson number below 1/4. Experiments were carried out to quantify this instability threshold, and show that, for the range of wavenumbers considered in this study, the critical wave steepness at which the wave breaking occurs is wavenumber-dependent (unlike surface waves). The corresponding critical wave Richardson numbers at incipient wave breaking are well below 1/4, in consonance with a modified instability analysis based on results from stratified shear flow instability theory. © 2005 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-04-01
    Description: The structure and evolution of homogeneous stably stratified sheared turbulence have been investigated through direct numerical simulation. In these simulations the primary dimensionless parameter is the Richardson number which measures the relative importance of stratification and mean shear. For Richardson numbers less than the transition value the Reynolds stress and vertical density fluX are down-gradient. Some of the vertical kinetic energy gained indirectly through production is eXpended in creating potential energy. Included in this shear-dominated regime is the stationary Richardson number at which the turbulent kinetic energy is constant in time although the spectra are evolving. At low dimensionless shear rate the stationary Richardson number increases with increasing Reynolds number. At the transition Richardson number the maXimum anisotropy and energy partition are achieved. For larger Richardson numbers potential energy is released into vertical kinetic energy and the vertical density fluX becomes counter-gradient. The associated production reversal enhances the decay rate of the turbulent kinetic energy. The effects of other dimensionless parameters have been investigated. After initial transients the developed flow is rather insensitive to the presence of significant initial potential energy. An increase in the Schmidt number increases the effect of stable stratification, e.g. the counter-gradient vertical density fluX occurs earlier. In the shear dominated case the down-gradient fluXes are produced by the pumping of fluid through coherent hairpin-shaped vorticity. In the buoyancy dominated flow the counter-gradient fluid parcels induce helical vorticity structures as they move toward a position of neutral buoyancy. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-01-10
    Description: Direct numerical simulation is used to examine turbulent mixing in a shear-free stably stratified fluid. Energy is continuously supplied to a small region to maintain a well-developed kinetic energy profile, as in an oscillating grid flow (Briggs et al. 1996; Hopfinger & Toly 1976; Nokes 1988). A microscale Reynolds number of 60 is maintained in the source region. The turbulence forms a well-mixed layer which diffuses from the source into the quiescent fluid below. Turbulence transport at the interface causes the mixed layer to grow under weakly stratified conditions. When the stratification is strong, large-scale turbulent transport is inactive and pressure transport becomes the principal mechanism for the growth of the turbulence layer. Down-gradient buoyancy flux is present in the large scales; however, far from the source, weak counter-gradient fluxes appear in the medium to small scales. The production of internal waves and counter-gradient fluxes rapidly reduces the mixing when the turbulent Froude number is lower than unity. When the stratification is weak, the turbulence is strong enough to break up the density interface and transport fluid parcels of different density over large vertical distances. As the stratification intensifies, turbulent eddies flatten against the interface creating anisotropy and internal waves. The dominant entrainment mechanism is then scouring. Mixing efficiency, defined as the ratio of buoyancy flux to available kinetic energy, exhibits a similar dependence on Froude number to other stratified flows (Holt et al. 1992; Lienhard & Van Atta 1990). However, using the anisotropy of the turbulence to define an alternative mixing efficiency and Froude number improves the correlation and allows local scaling.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-03-01
    Description: Physical and numerical experiments were performed for a linearly stratified heat—salt system, uniformly heated at one endwall. The initial stratification was in the diffusive sense. Intrusions formed at the heated endwall and propagated out into the interior fluid. Three classes of flow were identified, based upon the gravitational stability ratio, Rp, and a lateral stability parameter, R1, For R1 〉 1, a vertical lengthscale for the initial intrusion thickness was developed which agreed well with that observed in the physical experiments. In all cases, a region of salt fingering developed due to gradient reversal at the heated endwall. Two very distinct merging processes were observed depending on the specific flow class. The first process occurred under conditions of high gravitational and lateral stability, and appeared to be controlled by horizontal motions induced by the intrusions. The second process was observed under less stable conditions and was a result of vertical motions at the heated endwall within the intrusions themselves. In the least stable class of flow (low gravitational and lateral stability), the intrusions were found to be self-perpetuating in the sense that they continued to propagate following removal of the endwall heat flux.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-09-17
    Description: The breaking of periodic progressive two-layer interfacial waves at a Gaussian ridge is investigated through laboratory experiments. Length scales of the incident wave and topography are used to parameterize when and how breaking occurs. Qualitative observations suggest both shear and convection play a role in the instability of waves breaking at the ridge. Simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) measurements are used to calculate high resolution, two-dimensional velocity and density fields from which the local gradient Richardson number Rig is calculated. The transition to breaking occurred when ≤0.2 Rig ≤0.4. In these wave-ridge breaking events, the destabilizing effects of waves steepenin in shallow layers may be responsible for breaking at higher Rig than for similar waves breaking through shear instability in deep water (Troy & Koseff, J. Fluid Mech., vol. 543, 2005b, p. 107). Due to the effects of unsteadiness, nonlinear shoaling and flow separation, the canonical Rig 〉 0.25 is not sufficient to predict the stability of interfacial waves. A simple model is developed to estimate Rig in waves between finite depth layers using scales of the incident wave scale and topography. The observed breaking transition corresponds with a constant estimated value of Rig from the model, suggesting that interfacial shear plays an important role in initial wave instability. For wave amplitudes above the initial breaking transition, convective breaking events are also observed. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...