ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (1)
  • Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union  (1)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Nonlinear Processes in Geophysics 18 (2011): 977-987, doi:10.5194/npg-18-977-2011.
    Description: It is argued that the complexity of fluid particle trajectories provides the basis for a new method, referred to as the Complexity Method (CM), for estimation of Lagrangian coherent structures in aperiodic flows that are measured over finite time intervals. The basic principles of the CM are explained and the CM is tested in a variety of examples, both idealized and realistic, and in different reference frames. Two measures of complexity are explored in detail: the correlation dimension of trajectory, and a new measure – the ergodicity defect. Both measures yield structures that strongly resemble Lagrangian coherent structures in all of the examples considered. Since the CM uses properties of individual trajectories, and not separation rates between closely spaced trajectories, it may have advantages for the analysis of ocean float and drifter data sets in which trajectories are typically widely and non-uniformly spaced.
    Description: Work supported by grants NSF-CMG- 82469600, NSF-CMG-0825547 and ONR-N00014-11-1-0087.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-06-01
    Description: We consider the motion of small-amplitude surface gravity waves over variable bathymetry. Although the governing equations of motion are linear, for general bathymetric variations they are non-separable and cannot be solved exactly. For slowly varying bathymetry, however, approximate solutions based on geometric (ray) techniques may be used. The ray equations are a set of coupled nonlinear ordinary differential equations with Hamiltonian form. It is argued that for general bathymetric variations, solutions to these equations - ray trajectories - should exhibit chaotic motion, i.e. extreme sensitivity to initial and environmental conditions. These ideas are illustrated using a simple model of bottom bathymetry, h(x, y) =h0(l + ecos (2πx/L) cos (2πy/L)). The expectation of chaotic ray trajectories is confirmed via the construction of Poincare sections and the calculation of Lyapunov exponents. The complexity of chaotic geometric wavefields is illustrated by considering the temporal evolution of (mostly) chaotic wavecrests. Some practical implications of chaotic ray trajectories are discussed. © 1991, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...