ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (4)
  • Blackwell Science, Ltd  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Freshwater biology 41 (1999), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The ingestion rates of planktonic, mixotrophic cryptophytes in two perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, were investigated during the summer of 1997–1998.2. In Lake Fryxell, which is meromictic, ingestion rates increased with depth in November and were highest in a cryptophyte maximum close to the chemocline. In Lake Hoare, which is unstratified and freshwater, there was no significant difference in ingestion rates with depth. In both lakes, the highest ingestion rates occurred in early summer, decreasing in December and January. Ingestion rates varied between 0.2 bacteria cell−1 h−1 and 3.6 bacteria cell−1 h−1.3. During November, mixotrophic cryptophytes removed up to 13% of bacterial biomass day−1 and had a greater grazing impact than heterotrophic nanoflagellates (HNAN). As summer progressed, the grazing impact of cryptophytes and HNAN became similar.4. The maximum depth of cryptophytes in Lake Fryxell was predated by a population of the ciliate Plagiocampa. Plagiocampa had an ingestion rate of 0.13–0.19 cryptophytes cell−1 h−1. The grazing impact on the cryptophyte community was insignificant. However, the ciliate appeared to be indulging in temporary mixotrophy, sequestering the cryptophytes for a number of weeks before digesting them.5. It is suggested that mixotrophy is an important survival strategy in the extreme lake ecosystems of the McMurdo Dry Valleys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Freshwater biology 41 (1999), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The plankton dynamics of Ace Lake, a saline, meromictic basin in the Vestfold Hills, eastern Antarctica was studied between December 1995 and February 1997.2. The lake supported two distinct plankton communities; an aerobic microbial community in the upper oxygenated mixolimnion and an anaerobic microbial community in the lower anoxic monimolimnion.3. Phytoplankton development was limited by nitrogen availability. Soluble reactive phosphorus was never limiting. Chlorophyll a concentrations in the mixolimnion ranged between 0.3 and 4.4 μg L−−1 during the study period and a deep chlorophyll maximum persisted throughout the year below the chemo/oxycline.4. Bacterioplankton abundance showed considerable seasonal variation related to light and substrate availability. Autotrophic bacterial abundance ranged between 0.02 and 8.94 × 108 L−−1 and heterotrophic bacterial abundance between 1.26 and 72.8 × 108 L−−1 throughout the water column.5. The mixolimnion phytoplankton was dominated by phytoflagellates, in particular Pyramimonas gelidicola. P. gelidicola remained active for most of the year by virtue of its mixotrophic behaviour. Photosynthetic dinoflagellates occurred during the austral summer, but the entire population encysted for the winter.6. Two communities of heterotrophic flagellates were apparent; a community living in the upper monimolimnion and a community living in the aerobic mixolimnion. Both exhibited different seasonal dynamics.7. The ciliate community was dominated by the autotroph Mesodinium rubrum. The abundance of M. rubrum peaked in summer. A proportion of the population encysted during winter. Only one other ciliate, Euplotes sp., occurred regularly.8. Two species of Metazoa occurred in the mixolimnion; a calanoid copepod (Paralabidocera antarctica) and a rotifer (Notholca sp.). However, there was no evidence of grazing pressure on the microbial community. In common with most other Antarctic lakes, Ace Lake appears to be driven by ‘bottom-up’ forces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-26
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-07
    Description: Pony Lake, at Cape Royds, Antarctica, is a shallow, eutrophic, coastal lake that freezes solid in the winter. Changes in Pony Lake's physicochemical parameters and microbial community were studied during the transition from ice to open water. Due to rising water temperatures, the progressive melt of the ice column and the gradual mixing of basal brines into the remaining water column, Pony Lake evolved physically and chemically over the course of the summer, thereby affecting the microbial community composition. Temperature, pH, conductivity, nutrients and major ion concentrations reached their maximum in January. Pony Lake was colonized by bacteria, viruses, phytoflagellates, ciliates, and a small number of rotifers. Primary and bacterial production were highest in mid-December (2.66 mg C l-1d-1and 30.5 μg C l-1d-1, respectively). A 16S rRNA gene analysis of the bacterioplankton revealed 34 unique sequences dominated by members of theβ- andγ-proteobacterialineages. Cluster analyses on denaturing gradient gel electrophoresis (DGGE) banding patterns and community structure indicated a shift in the dominant members of the microbial community during the transition from winter ice, to early, and late summer lakewater. Our data demonstrate that temporal changes in physicochemical parameters during the summer months determine community dynamics and mediate changes in microbial species composition.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-06-01
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-01
    Description: Freezing temperatures, desiccation and high levels of solar radiation make the surface of the Antarctic ice sheet one of Earth’s harshest habitats. However, our study in the Vestfold Hills area of East Antarctica shows that favourable conditions for microbial production become established just beneath the surface of blue-ice areas, which collectively cover about 2% of the ice-sheet periphery. Their translucent, wind-polished surface allows solar heating to create meltwater in a greenhouse-type environment at depths of up to 1 m. Melting is intensified around dark debris particles, or cryoconite, where we found microbiological activity to be greatest. Rates of photosynthesis (average 2060 ng C (g cryoconite)−1d−1) were adapted to low light intensities (∼10% of surface irradiance values) and most likely dominated by cyanobacteria and Chloroplastida. A heterotrophic bacterial community was also found to be active within the cryoconite, although average bacterial growth rates (5.7 ng C (g cryoconite)−1d−1) were far lower than average community respiration (1870 ng C (g cryoconite)−1d−1). The majority of the respired carbon was most likely associated with the autotrophs and several protists. Therefore, blue-ice areas constitute oases for microbial life around the periphery of Earth’s coldest ice sheet.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...