ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 57 (2000), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The absolute gut evacuation rate (GER) (g day−1) of Harpagifer antarcticus increased with increasing ration mass, fish mass only influenced the absolute GER at a daily ration level of 0·3% wet fish mass (approximately a maintenance ration). The relative GER (% of meal fed day−1) was also affected differently by fish and ration mass depending on the relative ration level being fed; at rations of 0·7% wet fish mass or above the relative GER decreased with increasing fish or ration mass (in such a way that the absolute GER remained constant and unaffected by fish mass). At maintenance (0·3% wet fish mass) rations the relative GER was not affected by fish size or ration mass. Thus, there appears to be a ration threshold above which the digestion physiology alters. Mass-specific GER (% g fish−1 day−1) decreased with increasing fish mass. Within a set relative ration level (% wet fish mass) an increase in fish mass decreased the mass-specific GER. At a fixed ration mass, an increase in fish mass (i.e. a reduction in the ration expressed as % fish mass) resulted in a decrease in mass-specific GER. Gut evaluation time (GET) decreased and absorption efficiency (A) increased with increasing absolute GER. The effect of ration and fish mass on the absolute and relative GER followed the same pattern irrespective of the diet, however the A and GER (% day−1 and g day−1) were higher and the GET shorter when the fish were fed shelled krill rather than amphipods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of fish biology 60 (2002), S. 0 
    ISSN: 1095-8649
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Oxygen consumption and ammonia excretion of the Antarctic fish Notothenia coriiceps (18.4 cm LF) increased respectively two and fourfold above fasting levels 24 h after feeding with a single meal of shrimps (5.5 to 7.5% of body mass), and remained elevated for 120 h. In fasted fish, c-met positive cells in the fast muscle represented 5.5% of the total number of myonuclei. The number of c-met positive cells staining for the proliferating cell nuclear antigen was increased by 60% both 24 and 96 h after the meal, while the number of cells expressing the myogenic transcription factor, MyoD, was increased by 20% after 24 h, and by 44% after 96 h. The total numbers of c-met positive cells and cells expressing myogenic were not significantly altered 96 h following feeding. The results are consistent with an activation of myogenic progenitor cells proliferation by feeding but suggest a relatively long cell cycle time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-01-01
    Description: Ash-free-dry-weight determinations for a representative range of living brachiopod genera have revealed that a consistently high proportion of total organic mass is contained within the shell, partly as the organic matrix for biomineralisation and partly as minute extensions of the mantle tissues (caeca) housed within hollow endopunctae permeating the shell. On average 40% to 50% of the total organic mass of both articulate and inarticulate brachiopods is situated within the shell. This is true even for a rhynchonellid brachiopod which does not possess endopunctae, but which has a more dense protein matrix in its shell. The effectively hidden constituent of brachiopod tissue mass which is included in this component has often been overlooked, and as a result total metabolic tissue mass has been underestimated. This throws into question some previous interpretations of brachiopod respiratory and metabolic data.The oxygen consumption rates of several living brachiopods have been measured, and when respiring tissue in caeca in the shell is taken into consideration, it is clear that brachiopod metabolic rates are low when compared with other marine invertebrates (e.g. between 10% and 50% of the oxygen uptake of comparable gastropods and bivalve molluscs held in similar conditions). This low rate cannot be attributed to a slower pumping rate by the brachiopod lophophore, as has been suggested, because the rate of water movement is comparable to that across the bivalve gill.Nitrogen excretion rates have also been measured for a few living brachiopods, allowing a comparison with rates of oxygen consumption and providing an indication of the metabolic substrates used. These data on oxygen: nitrogen ratios suggest that one Antarctic brachiopod utilises exclusively protein as a metabolic substrate, while a temperate latitude species uses mainly protein during winter but lipids and carbohydrates during summer months. Histological observations, particularly of Terebratulina retusa from temperate waters, show that a specialised tissue layer in the brachiopod outer mantle epithelium proximal to the shell may be the site of storage of the protein that is metabolised during winter, and of carbohydrate mobilised during gonadal development in summer. The caeca have also been suggested as sites of storage of metabolites, and the possible relationships between these areas of mantle are discussed. It seems that the ability to store nutrients in the mantle, combined with flexibility of substrate utilisation and an inherently low metabolic rate, have been important factors in brachiopod evolution.
    Print ISSN: 1755-6910
    Electronic ISSN: 1755-6929
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...