ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 1915-1928 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper the stability of annular pressure-driven parallel flows of two liquids sandwiching a free cylindrical interface is considered. For small to moderate Reynolds numbers, the interface is susceptible to capillary and interfacial wave instabilities, the latter instability caused by a jump in viscosity at the interface. It is shown that favorable velocity profiles in both liquids may stabilize capillary breakup of the interface and suppress the axisymmetric interfacial wave instability. A long-wave analysis leads to the physical mechanism responsible for stabilization of capillary breakup. This physical mechanism is a generalization of that by which capillary breakup is stabilized by interfacial shear in an annular film of a single liquid. Stabilization of intermediate wavelengths is studied with a mechanical energy analysis, which leads to a description of the energetic processes at work.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 680-682 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Layered double diffusive flow patterns in a laterally heated stably stratified liquid are considered in a configuration which allows for steady states to exist. For the heat/salt system, these flows are characterized by the thermal and solutal Rayleigh numbers RaT and RaS, or equivalently by RaT and the buoyancy ratio Rρ. The bifurcation structure of steady patterns with respect to RaT is computed for two cases: fixed RaS and fixed Rρ. For the first case, results in N. Tsitverblit and E. Kit [Phys. Fluids A 5, 1062 (1993)], are computed and extended, and it is shown that many of the previously found flow patterns are unstable; only in a small interval of RaT, multiple (linearly) stable steady states exist. For the second case, the physical relevance of the unstable steady states with respect to the evolution of the flow toward a stable steady state is demonstrated. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1517-1517 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 615-631 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The instability of an arbitrarily shaped zonal jet on a midlatitude β-plane is considered within a two-layer quasi-geostrophic model with O(1) linear friction. Depending on the horizontal and vertical shear of the jet, it is susceptible to both barotropic and baroclinic instabilities. The linear stability boundaries are determined numerically for a parameter regime relevant to the Gulfstream. The weakly nonlinear (finite amplitude) evolution of the instabilities is shown to be governed by a Ginzburg-Landau equation and for arbitrary jet shapes the coefficients in this equation are computed numerically. The finite amplitude state is shown to become unstable to Benjamin-Feir sideband instabilities. The mixed baroclinic/barotropic character of the primary instability is crucial to this sideband instability which is shown to lead to complicated spatio-temporal behavior of the jet. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-01-25
    Description: The formation and evolution of a diffusive interface in a stable salt-stratified layer cooled from above is studied in a two-dimensional geometry by direct numerical simulation. For a typical example with realistic parameters, the evolution of the flow is computed up to the moment where three layers can be distinguished. Focus is on the development of the first mixed layer. The convective velocity scaling as proposed by Hunt (1984) and previously proposed expressions for the interfacial heat flux (Huppert 1971; Fernando 1989a) are shown to correspond well with the results of the simulation. The evolution of the first layer can be well described by an entrainment relation based on a local balance between kinetic and potential energy with mixing efficiency γ. The new entrainment relation is shown to fit the numerical results well and an interpretation of γ in terms of the overall energy balances of the flow is given. Previously, two rival mechanisms have been proposed that determine the final thickness of the first layer (Turner 1968; Fernando 1987). One of the distinguishing itures of both mechanisms is whether a transition in entrainment regime - as the first layer develops - is a necessary condition for the mixed layer to stop growing. Another the presence of a buoyancy jump over the interface before substantial convection the second layer occurs. From the numerical results, we find a significant buoyancy jump even before the thermal boundary layer ahead of the first layer becomes unstable. Moreover, the convective activity in the second layer is too small to be able to stop the growth of the first layer. We therefore favour the view proposed by Fernando (1987) that a transition in entrainment regime determines the thickness of the first layer. Following this, a new one-dimensional model of layer formation is proposed. Important expressions within this model are verified using the results of the numerical simulation. The model contains two constants which are determined from the numerical results. The results of the new model fit experimental results quite well and the parameter dependence of the thickness of the first layer is not sensitive to the values of the two constants.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-01-25
    Description: The bifurcation structure of thermohaline-driven flows is studied within one of the simplest zonally averaged models which captures thermohaline transport: a Boussinesq model of surface-forced thermohaline flow in a two-dimensional rectangular basin. Under mixed boundary conditions, i.e. prescribed surface temperature and fresh-water flux, it is shown that symmetry breaking originates from a codimension-two singularity which arises through the intersection of the paths of two symmetry-breaking pitchfork bifurcations. The physical mechanism of symmetry breaking of both the thermally and salinity dominated symmetric solution is described in detail from the perturbation structures near bifurcation. Limit cycles with an oscillation period in the order of the overturning time scale arise through Hopf bifurcations on the branches of asymmetric steady solutions. The physical mechanism of oscillation is described in terms of the most unstable mode just at the Hopf bifurcation. The occurrence of these oscillations is quite sensitive to the shape of the prescribed fresh-water flux. Symmetry breaking still occurs when, instead of a fixed temperature, a Newtonian cooling condition is prescribed at the surface. There is only quantitative sensitivity, i.e. the positions of the bifurcation points shift with the surface heat transfer coefficient. There are no qualitative changes in the bifurcation diagram except in the limit where both the surface heat flux and fresh-water flux are prescribed. The bifurcation structure at large aspect ratio is shown to converge to that obtained by asymptotic theory. The complete structure of symmetric and asymmetric multiple equilibria is shown to originate from a codimension-three bifurcation, which arises through the intersection of a cusp and the codimension-two singularity responsible for symmetry breaking.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-10-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-08-01
    Description: It is known that the breakup by surface tension of a cylindrical interface containing a viscous liquid can be dampeu by axial motion of the underlying liquid and that for an annular film the capillary instability can be completely suppressed (disturbances of all wavelengths decay) by certain axial velocity profiles. Here, using a linear stability analysis, it is shown that complete stabilization can also occur for thermocapillary-driven axial motions. However, the influence of thermocapillary instabilities typically shrinks the window in parameter space where stabilization is found, relative to the isothermal case. The influence of Reynolds, surface tension, Prandtl, and Biot parameters on limits of stabilization is calculated using continuation techniques. It is observed that windows of stabilization first open with topological changes of the neutral curves in parameter space. A long-wave analysis unfolds the nature of the singularities responsible for several of these topological changes. The analysis also leads to the physical mechanism responsible for (longwave) stabilization and in certain cases to necessary conditions for (long-wave) stabilization. © 1991, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...