ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-01-01
    Description: High-resolution radiocarbon calibration for the last 14,000 cal yr has been developed in large part using European oaks and pines. Recent subfossil wood collections from the Great Lakes region provide an opportunity to measure 14C activity in decadal series of rings in North America prior to the White Mountains bristlecone record. We developed decadal 14C series from wood at the classic Two Creeks site (∼11,850 BP) in east-central Wisconsin, the Liverpool East site (∼10,250 BP) in northwestern Indiana, and the Gribben Basin site (∼10,000 BP) in the Upper Peninsula of Michigan. Initial AMS dates on holocellulose produced younger-than-expected ages for most Two Creeks subsamples and for a few samples from the other sites, prompting a systematic comparison of chemical pretreatment using 2 samples from each site, and employing holocellulose, AAA-treated holocellulose, alpha-cellulose, and AAA-treated whole wood. The testing could not definitively reveal the source of error in the original analyses, but the “best” original ages together with new AAA-treated holocellulose and α-cellulose ages were visually fitted to the IntCal04 calibration curve at ages of 13,760–13,530 cal BP for the Two Creeks wood, 12,100–12,020 cal BP for Liverpool East, and 11,300–11,170 cal BP for Gribben Basin. The Liverpool East age falls squarely within the Younger Dryas (YD) period, whereas the Gribben Basin age appears to postdate the YD by ∼300 yr, although high scatter in the decadal Gribben Basin results could accommodate an older age nearer the end of the YD.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-01
    Description: The isotopic composition of ancient wood has the potential to provide information about past environments. We analyzed the δ13C, δ18O, and δ2H of cellulose of conifer trees from several cross-sections at each of 9 sites around the Great Lakes region ranging from ∼4000 to 14,000 cal BP. Isotopic values of Picea, Pinus, and Thuja species seem interchangeable for δ18O and δ2H comparisons, but Thuja appears distinctly different from the other 2 in its δ13C composition. Isotopic results suggest that the 2 sites of near-Younger Dryas age experienced the coldest conditions, although the Gribben Basin site near the Laurentide ice sheet was relatively dry, whereas the Liverpool site 500 km south was moister. The spatial isotopic variability of 3 of the 4 sites of Two Creeks age shows evidence of an elevation effect, perhaps related to sites farther inland from the Lake Michigan shoreline experiencing warmer daytime growing season temperatures. Thus, despite floristic similarity across sites (wood samples at 7 of the sites being Picea), the isotopes appear to reflect environmental differences that might not be readily evident from a purely floristic interpretation of macrofossil or pollen identification.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-04-01
    Description: We study dynamo processes in a convective layer of Boussinesq fluid rotating about the vertical. Irrespective of rotation, if the magnetic Reynolds number is large enough, the convection acts as an efficient small-scale dynamo with a growth time comparable with the turnover time and capable of generating a substantial amount of magnetic energy. When the rotation is important (large Taylor number) the characteristic horizontal scale of the convection decreases and the flow develops a well-defined distribution of kinetic helicity antisymmetric about the mid-plane. We find no convincing evidence of large-scale dynamo action associated with this helicity distribution. Even when the rotation is strong, the magnetic energy at large scales remains small, and comparable with that in the non-rotating case. By externally imposing a uniform field, we measure the average electromotive force. We find this quantity to be extremely strongly fluctuating, and are able to compute the associated α-effect only after very long time averaging. In those cases for which reasonable convergence is achieved, the α-effect is small, and controlled by the magnetic diffusivity. Thus we demonstrate the existence of a system whose small-scale dynamo growth rate is turbulent, i.e. independent of diffusivity, but whose α-effect is laminar, i.e. dependent on diffusivity. The implications of these results to the problem of the generation of strong mean fields are discussed. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-02-01
    Description: We calculate solutions for one-layer hydraulically controlled flows with viscosity. Viscosity and bottom drag produce two key modifications to inviscid hydraulic theory: the position of the hydraulic control point is altered, and the solution requires knowledge of the velocity profile over the entire domain. Hence, analytically tractable solutions are not generally possible and a numerical technique is developed to calculate such flows. In this paper, bottom drag and fluid viscosity are treated as independent parameters, allowing the influence of each parameter on flux, flow dissipation and position of hydraulic control to be quantified. We find that the flow is determined primarily by the bottom drag, and, surprisingly, the largest perturbation from this state occurs for intermediate values of fluid viscosity. © 2006 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-05-10
    Description: A turbulent plume from a continuous source of buoyancy in a long tank is shown to generate a series of quasi-steady counterflowhng horizontal shear layers throughout the tank. Both the horizontal flow velocity and the depth of the shear layers are observed to decrease with distance above/below the plume outflow. The shear layers are supported by the stable density stratification produced by the plume and are superimposed on the vertical advection and entrainment inflow that make up the so-called 'filling box' circulation. Thus, at some depths, the surrounding water flows away from the plume instead of being entrained, although we see no evidence of 'detrainment' of dense plume water. Given the stratification produced by the plume at large times, the timescale for the velocity structure to adjust to changes in forcing is proportional to the time for long internal gravity waves to travel the length of the tank. The shear layers are interpreted in terms of internal normal modes that are excited by, and which in turn determine, the horizontal plume outflow. The sixth and seventh baroclinic modes typically dominate because at the level of the plume outflow their phase speed is approximately equal and opposite to the vertical advection in the 'filling box'. Also, the approximate balance between phase speed and advection is found to hold throughout the tank, resulting in the observed quasi-steady flow structure. Viscosity causes the horizontal velocity in the shear layers to decrease with distance above/below the plume outflow, and is thought to be responsible for a low-frequency oscillation in the flow structure that is observed during experiments.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-04-09
    Description: By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-05-22
    Description: We present a simple flow model and solution to describe 'horizontal convection' driven by a gradient of temperature or heat flux along one horizontal boundary of a rectangular box. Following laboratory observations of the steady-state convection, the model is based on a localized vertical turbulent plume from a line or point source that is located anywhere within the area of the box and that maintains a stably stratified interior. In contrast to the 'filling box' process, the convective circulation involves vertical diffusion in the interior and a stabilizing buoyancy flux distributed over the horizontal boundary. The stabilizing flux forces the density distribution to reach a steady state. The model predictions compare well with previous laboratory data and numerical solutions. In the case of a point source for the plume (the case which best mimics the localized sinking in the large-scale ocean overturning) the thermal boundary layer is much thicker than that given by the two-dimensional boundary layer scaling of H. T. Rossby (Tellus, vol. 50, 1965, p. 242). © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-05-25
    Description: Within the same framework we calculate the mean induction of a magnetic field and the mean diffusivity of a passive scalar, for two families of flows in which the degree of spatial decorrelation can be systematically adjusted. We investigate the dependence of these quantities both on the spatial decoherence and on the molecular diffusivity. We demonstrate that for flows with similar global properties, the mean induction is dramatically reduced as the flows become less spatially correlated; the mean diffusivity, on the other hand, shows no significant or systematic variation. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-08-25
    Description: In global ocean dynamics Rossby waves play a vital rôle in the long-term distribution of vorticity; knowledge of the interaction between these waves and topography is crucial to a full understanding of this process, and hence to the transportation of energy, mixing and ocean circulation. The interaction of baroclinic Rossby waves with abrupt topography is the focus of this study. In this paper we model the ocean as a continuously stratified fluid for which the linear theory predicts a qualitatively different structure for the wave modes than that predicted by barotropic or simple layered models, even if most of the density variation is confined to the thermocline. We consider the scattering of a westward-propagating baroclinic Rossby wave by a narrow ridge on the ocean floor, modelled by a line barrier of infinite extent, orientated at an arbitrary angle to the incident wave. Transmission and reflection coefficients for the propagating modes are found using both an algebraic method and, in the case where this breaks down, matched asymptotic expansions. The results are compared with recent analyses of satellite altimetry data.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-10
    Description: We report laboratory and numerical experiments with the convective circulation that develops in a long channel driven by heating and cooling through opposite halves of the horizontal base. The problem is similar to that posed by Stommel (Proc. Natl Acad. Sci. vol. 48, 1962, p. 766) and Rossby (Deep-Sea Res. vol. 12, 1965, p. 9; Tellus vol. 50, 1998, p. 242), where flow forced by a linear temperature variation along the ocean surface or the base of a tank presented a demonstration of the smallness of sinking regions in the meridional overturning circulation of the oceans. In contrast to the previous experiments, we use small aspect ratio, larger Rayleigh numbers, piecewise uniform boundary conditions and an imposed input heat flux. The flow is characterized by a vigorous overturning circulation cell filling the box length and depth. A stable thermocline forms above the cooled base and is advected over the heated part of the base, where it is eroded from below by small-scale three-dimensional convection, forming a 'convective mixed layer'. At the endwall, the convective mixing is overshadowed by a narrow but turbulent plume rising through the full depth of the box. The return flow along the top of the box is turbulent with large slowly migrating eddies, and occupies approximately a third of the total depth. Theoretical scaling laws give temperature differences, thermocline thickness and velocities that are in good agreement with the experimental data and two-dimensional numerical solutions. The measured and computed density structure is largely similar to the thermocline and abyssal stratification in the oceans. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...