ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Environmental context. Laboratory incubation experiments and shipboard measurements in the Southern Atlantic Ocean have provided the first evidence for marine production of monoterpenes. Nine marine phytoplankton monocultures were investigated using a GC-MS equipped with an enantiomerically-selective column and found to emit monoterpenes including (–)-/(+)-pinene, limonene and p-ocimene, all of which were previously thought to be exclusively of terrestrial origin. Maximum levels of 100–200 pptv total monoterpenes were encountered when the ship crossed an active phytoplankton bloom. Abstract. Laboratory incubation experiments and shipboard measurements on the Southern Atlantic Ocean have provided the first evidence for marine production of monoterpenes. Nine marine phytoplankton monocultures were investigated using a GC-MS equipped with an enantiomerically-selective column and found to emit at rates, expressed as nmol C10H16 (monoterpene) g [chlorophyll a]–1 day–1, from 0.3 nmol g [chlorophyll a]–1 day–1 for Skeletonema costatum and Emiliania huxleyi to 225.9 nmol g [chlorophyll a]–1 day–1 for Dunaliella tertiolecta. Nine monoterpenes were identified in the sample and not in the control, namely: (–)-/(+)-pinene, myrcene, (+)-camphene, (–)-sabinene, (+)-3-carene, (–)-pinene, (–)-limonene and p-ocimene. In addition, shipboard measurements of monoterpenes in air were made in January–March 2007, over the South Atlantic Ocean. Monoterpenes were detected in marine air sufficiently far from land as to exclude influence from terrestrial sources. Maximum levels of 100–200 pptv total monoterpenes were encountered when the ship crossed an active phytoplankton bloom, whereas in low chlorophyll regions monoterpenes were mostly below detection limit.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Environmental context. Carbon monoxide (CO) is a key component for atmospheric chemistry and its production in the ocean, although minor at the global scale, could play a significant role in the remote marine atmosphere. Up to now, CO production in the ocean was considered to mainly originate from the photo-production of dissolved organic matter (mainly under UV radiation). In this paper, we show evidence for direct production of CO by phytoplankton and we suggest it as a significant mechanism for CO production in the ocean. Abstract. In order to investigate carbon monoxide (CO) emissions by phytoplankton organisms, a series of laboratory experiments was conducted in Kiel (Germany). Nine monocultures, including diatoms, coccolithophorids, chlorophytes and cyanobacteria have been characterised. This was done by following the CO variations from monoculture aliquots exposed to photosynthetically active radiation during one or two complete diurnal cycles. All the studied cultures have shown significant CO production when illuminated. Emission rates have been estimated to range from 1.4 × 10–5 to 8.7 × 10–4 μg of CO μg chlorophyll–1 h–1 depending on the species. When considering the magnitude of the emission rates from the largest CO emitters (cyanobacteria and diatoms), this biotic source could represent up to 20% of the CO produced in oceanic waters. As global models currently mainly consider CO production from the photo-degradation of dissolved organic matter, this study suggests that biotic CO production should also be taken into account. Whether this biological production might also contribute to some degree to the previous observed non-zero CO production below the euphotic zone (dark CO production) cannot be deduced here and needs to be further investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: We report here isoprene emission rates determined from various phytoplankton cultures incubated under PAR light which was varied so as to simulate a natural diel cycle. Phytoplankton species representative of different phytoplankton functional types (PFTs) namely: cyanobacteria, diatoms, coccolithophorides, and chlorophytes have been studied. Biomass normalised isoprene emission rates presented here relative to the chlorophyll-a (Chl-a) content of the cultures showed that the two cyanobacteria (Synechococcus and Trichodesmium) were the strongest emitters with emission rates in the range of 17 to 28 mu g C(5)H(8) g(-1) Chl-a h(-1). Diatoms produced isoprene in a significantly lower emission range: 3 to 7.5 mu g C(5)H(8) g(-1) Chl-a h(-1) and Dunaliella tertiolecta was by far the lowest emitter of our investigated plankton cultures. Despite the group specific differences observed, a high emission rate variance was observed to occur within one phytoplankton group. However, a combination of literature and our own data showed a clear relationship between the actual cell volume and the isoprene emission rates. This relationship could be a valuable tool for future modelling approaches of global isoprene emissions.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...