ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-05-20
    Description: The Amazon River transports large amounts of terrestrial organic carbon (OCterr/ from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC/, and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al = Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S = V) and cinnamyl to vanillyl (C = V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and 38 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon fan, low lignin content, relatively depleted δ13CTOC values and high (Ad = Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-01
    Description: Due to the high sensitivity of southern Africa to climate change, a reliable understanding of its hydrological system is crucial. Recent studies of the regional climatic system have revealed a highly complex interplay of forcing factors on precipitation regimes. This includes the influence of the tropical easterlies, the strength of the southern hemispheric westerlies as well as sea surface temperatures along the coast of the subcontinent. However, very few marine records have been available in order to study the coupling of marine and atmospheric circulation systems. Here we present results from a marine sediment core, recovered in shallow waters off the Gouritz River mouth on the south coast of South Africa. Core GeoB18308-1 allows a closer view of the last ∼4 kyr. Climate sensitive organic proxies, like the distribution and isotopic composition of plant-wax lipids as well as indicators for sea surface temperatures and soil input, give information on oceanographic and hydrologic changes during the recorded time period. Moreover, the micropaleontology, mineralogical and elemental composition of the sediments reflect the variability of the terrigenous input to the core site. The combination of down-core sediment signatures and a catchment-wide provenance study indicate that the Little Ice Age (∼300–650 cal yr BP) was characterized by climatic conditions favorable to torrential flood events. The Medieval Climate Anomaly (∼950–650 cal yr BP) is expressed by lower sea surface temperatures in the Mossel Bay area and humid conditions in the Gouritz River catchment. These new results suggest that the coincidence of humid conditions and cooler sea surface temperatures along the south coast of South Africa resulted from a strengthened and more southerly anticyclonic circulation. Most probably, the transport of moisture from the Indian Ocean by strong subtropical easterlies was coupled with Agulhas Bank upwelling pulses, which were initiated by an increase in Agulhas Current strength.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-24
    Description: The Lena River in central Siberia is one of the major pathways translocating terrestrial organic matter (OM) from its vast catchment area to the coastal zone of the Laptev Sea and the Arctic Ocean. The permafrost soils of its far south-stretching catchment, which store huge amounts of OM, will most likely respond differently to climate warming and remobilize previously frozen OM with distinct properties specific for the source vegetation and soil. To characterize the material discharged by the Lena River, we analyzed the lignin phenol composition in total suspended matter (TSM) from surface water collected in spring and summer, surface sediments from Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex), and plant samples. Our results show that lignin-derived cinnamyl : vanillyl (C / V) and syringyl : vanillyl (S / V) ratios are 〉 0.14 and 0.25, respectively, in TSM and surface sediments, whereas in delta soils they are 〉 0.16 and 〉 0.51, respectively. These lignin compositions are consistent with significant inputs of organic matter from non-woody angiosperm sources mixed with organic matter derived from woody gymnosperm sources. We applied a simple linear mixing model based on the C / V and S / V ratios, and the results indicate the organic matter in delta TSM samples and Buor Khaya Bay surface sediments contain comparable contributions from gymnosperm material, which is primarily derived from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small catchment area covered by tundra (~ 12%), the input is substantial and tundra-derived OM input is likely to increase in a warming Arctic. The similar and high acid to aldehyde ratios of vanillyl and syringyl (Ad / AlV, S) in Lena Delta summer TSM (〉 0.7 and 〉 0.5, respectively) and Buor Khaya Bay surface sediments (〉 1.0 and 〉 0.9, respectively) suggest that the OM is highly degraded and Lena River summer TSM could be a possible source of the surface sediments. The Ad / AlV, S ratios of the first and third delta terraces were generally lower (mean ratios 〉 0.4 and 〉 0.4, respectively) than summer TSM and surface sediments. This implies that TSM contains additional contributions from a more degraded OM source (southern catchment and/or finer more degraded particle size). Alternatively, OM degradation on land after permafrost thawing and subaqueously during transport and sedimentation could be considerable. Despite the high natural heterogeneity of OM stored in delta soils and exported by the Lena River, the catchment-characteristic vegetation is reflected by the lignin biomarker composition. Climate-warming-related changes in the Lena River catchment may be detectable in changing lignin biomarker composition and diagenetic alteration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-10
    Description: Organic geochemical and micropaleontological analyses of surface sediments collected in the southern Drake Passage and the Bransfield Strait, Western Antarctic Peninsula, enable a proxy-based reconstruction of recent sea ice conditions in this climate-sensitive area. We study the distribution of the sea ice biomarker IPSO25, and biomarkers of open marine environments such as more unsaturated highly branched isoprenoid alkenes and phytosterols. Comparison of the sedimentary distribution of these biomarker lipids with sea ice data obtained from satellite observations and diatom-based sea ice estimates provide for an evaluation of the suitability of these biomarkers to reflect recent sea surface conditions. The distribution of IPSO25 supports earlier suggestions that the source diatom seems to be common in near-coastal environments characterized by annually recurring sea ice cover, while the distribution of the other biomarkers is highly variable. Offsets between sea ice estimates deduced from the abundance of biomarkers and satellite-based sea ice data are attributed to the different time intervals recorded within the sediments and the instrumental records from the study area, which experienced rapid environmental changes during the past 100 years. To distinguish areas characterized by permanently ice-free conditions, seasonal sea ice cover and extended sea ice cover, we apply the concept of the PIP25 index from the Arctic Ocean to our data and introduce the term PIPSO25 as a potential sea ice proxy. While the trends in PIPSO25 are generally consistent with satellite sea ice data and winter sea ice concentrations in the study area estimated by diatom transfer functions, more studies on the environmental significance of IPSO25 as a Southern Ocean sea ice proxy are needed before this biomarker can be applied for semi-quantitative sea ice reconstructions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-23
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits is still poorly quantified. We define the OM quality as the intrinsic potential for further transformation, decomposition and mineralisation. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of Late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 kyr. We showed that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt %). The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal ka BP) and are overlaid by last glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched fatty acids (FAs) relative to mid- and long-chain (C�20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C=N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease in HPFA values downwards along the profile probably indicates stronger OM decomposition in the oldest (MIS 3) deposits of the cliff. The characterisation of OM from eroding permafrost leads to a better assessment of the greenhouse gas potential of the OC released into river and nearshore waters in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...