ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Other Sources
  • Blackwell Science Ltd.  (1)
  • Blackwell Science, Ltd  (1)
  • 2000-2004  (2)
  • 2002  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford,UK : Blackwell Science, Ltd
    Molecular microbiology 46 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two-component and phosphorelay signal transduction systems are believed to function as environ-mental sensors that programme gene expression to the composition of the ecological niche in which a microbe normally resides. The question of how evolutionarily related bacteria that occupy different environments change their signal transduction pathways to adapt to such environments was asked of the sporulation phosphorelay of Bacillus subtilis, Bacillus halodurans, Bacillus anthracis and Bacillus stearothermophilus. Comparison of the primary amino acid sequence of phosphorelay proteins with the known structural and interactive properties of the B. subtilis proteins revealed that the amino acid residues of interaction surfaces between phosphorelay proteins and between a phosphorelay protein and DNA resist evolutionary change. The absolute conservation of interaction surfaces allowed the identification of sporulation sensor kinases in B. halodurans, B. anthracis and B. stearothermophilus. In these sensor kinases, the signal-sensing domains are vastly different in size and subdomain composition, with little apparent conservation between species, whereas the catalytic domains of these sensor kinases retain the high level of homology observed for the other phosphorelay proteins. Adaptation to new environments appears to result in rapid evolution of signalling domains to maximize environmental impact while maintaining identical protein–protein and protein–DNA contacts in the entire phosphorelay. In Clostridial genomes, only the Spo0A protein was found, suggesting that the anaerobic relatives of the Bacilli do not use a phosphorelay and phosphorylate Spo0A directly with sensor kinases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Streptococcus parasanguis is a primary colonizer of the tooth surface and plays a pivotal role in the formation of dental plaque. The fimbriae of S. parasanguis are important in mediating adhesion to saliva-coated hydroxylapatite (SHA), an in vitro tooth adhesion model. The Fap1 adhesin has been identified as the major fimbrial subunit, and recent studies suggest that Fap1 is a glycoprotein. Monosaccharide analysis of Fap1 purified from the culture supernatant of S. parasanguis indicated the presence of rhamnose, glucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. A glycopeptide moiety was isolated from a pronase digest of Fap1 and purified by immunoaffinity chromatography. The monosaccharide composition of the purified glycopeptide was similar to that of the intact molecule. The functionality of the glycan moiety was determined using monoclonal antibodies (MAbs) specific for the intact Fap1 glycoprotein. These antibodies were grouped into two categories based on their ability to block adhesion of S. parasanguis to SHA and their corresponding specificity for either protein or glycan epitopes of the Fap1 protein. ‘Non-blocking’ MAb epitopes were mapped to unique protein sequences in the N-terminus of the Fap1 protein using non-glycosylated recombinant Fap1 proteins (rFap1 and drFap1) expressed in Escherichia coli. In contrast, the ‘blocking’ antibodies did not bind to the recombinant Fap1 proteins, and were effectively competed by the binding to the purified glycopeptide. These data suggest that the ‘blocking’ antibodies are specific for the glycan moiety and that the adhesion of S. parasanguis is mediated by sugar residues associated with Fap1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...