ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Photosynthetic nitrogen use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) is one of the most important factors for the interspecific variation in photosynthetic capacity. PNUE was analysed in two evergreen and two deciduous species of the genus Quercus. PNUE was lower in evergreen than in deciduous species, which was primarily ascribed to a smaller fraction of nitrogen allocated to the photosynthetic apparatus in evergreen species. Leaf nitrogen was further analysed into proteins in the water-soluble, the detergent-soluble, and the detergent-insoluble fractions. It was assumed that the detergent-insoluble protein represented the cell wall proteins. The fraction of nitrogen allocated to the detergent-insoluble protein was greater in evergreen than in deciduous leaves. Thus the smaller allocation of nitrogen to the photosynthetic apparatus in evergreen species was associated with the greater allocation to cell walls. Across species, the fraction of nitrogen in detergent-insoluble proteins was positively correlated with leaf mass per area, whereas that in the photosynthetic proteins was negatively correlated. There may be a trade-off in nitrogen partitioning between components pertaining to productivity (photosynthetic proteins) and those pertaining to persistence (structural proteins). This trade-off may result in the convergence of leaf traits, where species with a longer leaf life-span have a greater leaf mass per area, lower photosynthetic capacity, and lower PNUE regardless of life form, phyllogeny, and biome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: There is a strong correlation between leaf thickness and the light-saturated rate of photosynthesis per unit leaf area (Pmax). However, when leaves are exposed to higher light intensities after maturation, Pmax often increases without increasing leaf thickness. To elucidate the mechanism with which mature leaves increase Pmax, the change in anatomical and physiological characteristics of mature leaves of Chenopodium album, which was transferred from low to high light condition, were examined. When compared with leaves subjected to low light continuously (LL leaves), the leaves transferred from low to high light (LH leaves) significantly increased Pmax. The transfer also increased the area of chloroplasts facing the intercellular space (Sc) and maintained a strong correlation between Pmax and Sc. The mesophyll cells of LL leaves had open spaces along cell walls where chloroplasts were absent, which enabled the leaves to increase Pmax when they were exposed to high light (LH). However, the LH leaves were not thick enough to allow further increase in Pmax to the level in HH leaves. Thus leaf thickness determines an upper limit of Pmax of leaves subjected to a change from low to high light conditions. Shade leaves would only increase Pmax when they have open space to accommodate chloroplasts which elongate after light conditions improve.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Interspecific variation in the response to transfer from low to high growth irradiance with respect to anatomical and photosynthetic characteristics was studied in mature leaves of three tree species, Betula ermanii Cham., Acer rufinerve Sieb. et Zucc. and Fagus crenata Blume, which occur in different successional stages in temperate deciduous forests. Transfer from low to high irradiance increased the light-saturated rate of photosynthesis per unit leaf area (Pmax) significantly in B. ermanii and A. rufinerve, but not in F. crenata. Leaves of B. ermanii grown at low irradiance were relatively thick and had vacant spaces along the mesophyll cell surfaces which was not occupied by chloroplasts or other organelles. After transfer to high irradiance, chloroplasts enlarged to fill the space along with Pmax without an increase in leaf thickness. Leaves of A. rufinerve were plastic in mesophyll cell surface area and in leaf thickness, both of which increased after the transfer to high irradiance, along with an increase in the amount of chloroplasts and in Pmax. On the other hand, F. crenata had little mesophyll cell surface unoccupied by chloroplasts and leaf anatomy was not changed after the transfer. In all species, Pmax was strongly correlated with chloroplast surface area adjacent to the exposed mesophyll surface across different growth irradiances. An increase in Pmax was observed only when chloroplast volume also increased. We conclude that light acclimation potential is primarily determined by the availability of unoccupied cell surface into which chloroplasts expand, as well as by the plasticity of the mesophyll that allows an increase in its surface area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...