ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 24 (2001), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The purpose of this paper is to revisit the maximum tensile stress (MTS) criterion to predict brittle fracture for mixed mode conditions. Earlier experimental results for brittle fracture of polymethylmethacrylate (PMMA) using angled cracked plates are also re-examined. The role of the T-stress in brittle fracture for linear elastic materials is emphasized. The generalized MTS criterion is described in terms of mode I and II stress intensity factors, KI and KII and the T-stress (the stress parallel to the crack), and a fracture process zone, rc . The generalized MTS criterion is then compared with the earlier experimental results for PMMA subjected to mixed mode conditions. It is shown that brittle fracture can be controlled by a combination of singular stresses (characterized by K ) or non-singular stress (T-stress). The T-stress is also shown to have an influence on brittle fracture when the singular stress field is a result of mode II loading.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 27 (2004), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Quantification of the enhancement in cleavage fracture toughness of ferritic steels following warm pre-stressing has received great interest in light of its significance in the integrity assessment of such structures as pressure vessels. A Beremin type probability distribution model, i.e., a local stress-based approach to cleavage fracture, has been developed and used for estimating cleavage fracture following prior loading (or warm pre-stressing, WPS) in two ferritic steels with different geometry configurations. Firstly, the Weibull parameters required to match the experimental scatter in lower shelf toughness of the candidate steels are identified. These parameters are then used in two- and three-dimensional finite element simulations of prior loading on the upper shelf followed by unloading and cooling to lower shelf temperatures (WPS) to determine the probability of failure. Using both isotropic hardening and kinematic hardening material models, the effect of hardening response on the predictions obtained from the suggested approach has been examined. The predictions are consistent with experimental scatter in toughness following WPS and provide a means of determining the importance of the crack tip residual stresses. We demonstrate that for our steels the crack tip residual stress is the pivotal feature in improving the fracture toughness following WPS. Predictions are compared with the available experimental data. The paper finally discusses the results in the context of the non-uniqueness of the Weibull parameters and investigates the sensitivity of predictions to the Weibull exponent, m, and the relevance of m to the stress triaxiality factor as suggested in the literature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 28 (2005), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Experimental creep crack growth (CCG) test data are obtained by following standards that characterize CCG rates using the C* parameter. Such data are then used in high-temperature failure assessment procedures. An alternative approach to defect assessment at high-temperature failure is an extension of the R6 failure assessment diagram (FAD). At high temperature, creep toughness, Kcmat, can be estimated from CCG tests and replaces low-temperature toughness in R6. This approach has the advantage that it is not necessary to establish a creep fracture regime, such as small-scale, primary or widespread creep. Also, a new strain-based FAD has been developed, potentially allowing variations of stress and temperature to be accommodated. In this paper, the results of a series of crack growth tests performed on ex-service 316H stainless steel at 550 °C are examined in the light of the limitations imposed by ASTM for CCG testing. The results are then explored in terms of toughness and presented in FADs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...