ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road , Oxford OX4 2XG , UK . : Blackwell Science Ltd
    Geophysical prospecting 53 (2005), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Seismic waveforms contain valuable information about the media, but the waveform inversion is a non-linear problem. We present a waveform inversion method that combines a local optimization method with a genetic algorithm to determine the anisotropic parameters of a horizontally stratified medium. Synthetic seismograms for a horizontally stratified anisotropic medium are calculated using the reflectivity technique. In the initial stage of the inversion, the global space-sampling properties of the genetic algorithm are used to direct the search to the region close to the global solution. This solution is then further improved using a conjugate-gradient method. The numerical experiments performed with noisy synthetic data show that our hybrid optimization method satisfactorily reconstructs the anisotropic parameters at a reasonable computing cost while the range of slowness is adequate. We found that (i) for small-angle data neither single- nor multiple-component data are sufficient to determine the anisotropic parameters uniquely; (ii) for medium-angle data the multiple-component data are sufficient to determine the anisotropic parameters exactly whereas the single-component data are not sufficient; and (iii) for wide-angle data, either single- or multiple-component data are sufficient to determine the anisotropic parameters accurately.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 48 (2000), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A sensitivity study of elastic parameters in amplitude-variation-with-slowness (AVS) for small- and large-offset seismic data is presented. In order to handle the non-linearity associated with waveform or amplitude beyond the critical slowness, an inversion algorithm based on Bayes' theory is used. A genetic algorithm was used to obtain the a posteriori probability density (PPD) function. The sensitivity analysis is performed on synthetic data containing P-wave as well as converted S-wave reflections. Four different two-layer models, which represent the typical range of AVS responses associated with the gas-sands normally encountered in exploration, were used to examine how well the elastic parameters can be inverted for different parametrizations by comparing the PPD functions. The sensitivity study results suggest that including wide-angle data in the inversion can greatly enhance the quality of inversion. The converted S-wave reflections can provide valuable extra information that can be used to extract elastic parameters. The results with noisy data demonstrate that the contrast of density and three velocity ratios can be estimated robustly with wide-angle reflection data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 51 (2003), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Wide-angle multicomponent ocean-bottom cable (OBC) data should further enhance sub-basalt imaging by using both compressional and converted shear wavefields. The first step in analysing multicomponent OBC data is to decompose the recorded wavefields into pure P- and pure S-wavefields, and extract the upgoing P- and S-waves. This paper presents a new scheme to separate P- and S-wavefields from wide-angle multicomponent OBC data in the τ–p domain. By considering plane-wave components with a known horizontal slowness, the P- and S-wavefields are separated into the directions of observed P- and S-wave oscillations using the horizontal and vertical components of the data. The upgoing P- and S-waves are then extracted from the separated P- and S-wavefields. The parameters used in the separation are the seismic wave velocities and the density at the receiver location, which can be estimated from the first reflection phase observed on the horizontal and vertical components. Numerical tests on synthetic data for a plane-layered model show good performance and demonstrate the accuracy of the scheme. Separation of wavefields from a basalt model is performed using synthetic wide-angle multicomponent OBC data. The results show that both near-offset and wide-angle reflections and conversions from within and below basalt layers are enhanced and clearly identified on the separated wavefields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...