ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variation in stomatal conductance is typically explained in relation to environmental conditions. However, tree height may also contribute to the variability in mean stomatal conductance. Mean canopy stomatal conductance of individual tree crowns (GSi) was estimated using sap flux measurements in Fagus sylvatica L., and the hypothesis that GSi decreases with tree height was tested. Over 13 d of the growing season during which soil moisture was not limiting, GSi decreased linearly with the natural logarithm of vapour pressure deficit (D), and increased exponentially to saturation with photosynthetic photon flux density (Qo). Under conditions of D= 1 kPa and saturating Qo, GSi decreased by approximately 60% with 30 m increase in tree height. Over the same range in height, sapwood-to-leaf area ratio (AS:AL) doubled. A simple hydraulic model explained the variation in GSi based on an inverse relationship with height, and a linear relationship with AS:AL. Thus, in F. sylvatica, adjustments in AS:AL partially compensate for the negative effect of increased flow-path length on leaf conductance. Furthermore, because stomata with low conductance are less sensitive to D, gas exchange of tall trees is reduced less by high D. Despite these compensations, decreasing hydraulic conductance with tree height in F. sylvatica reduces carbon uptake through a corresponding decrease in stomatal conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Responses of stomatal conductance (gs) to increasing vapour pressure deficit (D) generally follow an exponential decrease described equally well by several empirical functions. However, the magnitude of the decrease – the stomatal sensitivity – varies considerably both within and between species. Here we analysed data from a variety of sources employing both porometric and sap flux estimates of gs to evaluate the hypothesis that stomatal sensitivity is proportional to the magnitude of gs at low D (≤ 1 kPa). To test this relationship we used the function gs=gsref–m· lnD where m is the stomatal sensitivity and gsref=gs at D= 1 kPa. Regardless of species or methodology, m was highly correlated with gsref (average r2= 0·75) with a slope of approximately 0·6. We demonstrate that this empirical slope is consistent with the theoretical slope derived from a simple hydraulic model that assumes stomatal regulation of leaf water potential. The theoretical slope is robust to deviations from underlying assumptions and variation in model parameters. The relationships within and among species are close to theoretical predictions, regardless of whether the analysis is based on porometric measurements of gs in relation to leaf-surface D (Ds), or on sap flux-based stomatal conductance of whole trees (GSi), or stand-level stomatal conductance (GS) in relation to D. Thus, individuals, species, and stands with high stomatal conductance at low D show a greater sensitivity to D, as required by the role of stomata in regulating leaf water potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...