ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (2)
Collection
Publisher
Years
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We used a combination of eddy flux, chamber and environmental measurements with an integrated suite of models to analyse the seasonality of net ecosystem carbon uptake (FCO2) in an 8-year-old, closed canopy Pinus radiata D.Don plantation in New Zealand (42°52′ S, 172°45′ E). The analyses utilized a biochemically based, big-leaf model of tree canopy photosynthesis (Ac), coupled to multiplicative environmental-constraint functions of canopy stomatal conductance (Gc) via environmental measurements, a temperature-dependent model of ecosystem respiration (Reco), and a soil water balance model. Available root zone water storage capacity at the measurement site is limited to about 50 mm for the very stony soil, and annual precipitation is only 660 mm, distributed evenly throughout the year. Accordingly the site is prone to soil moisture deficit throughout the summer. G c and Ac obtained maximum rates early in the growing season when plentiful soil water supply was associated with sufficient quantum irradiance (Qabs), and moderate air saturation deficit (D) and temperature (T). From late spring onwards, soil water deficit and D confined Gc and Ac congruously, which together with the solely temperature dependency of Reco resulted in the pronounced seasonality in FCO2. Reflecting a light-limitation of Ac in the closed canopy, modelled annual carbon (C) uptake was most sensitive to changes in Qabs. However, Qabs did not vary significantly between years, and changes in annual FCO2 were mostly due to variability in summer rainfall and D. Annual C-uptake of the forest was 717 g C m–2 in a near-average rainfall year, exceeding by one third the net uptake in a year with 20% less than average rainfall (515 g C m–2).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The three dimensional distribution of intercepted radiation, intercellular CO2 concentration (Ci) and late summer needle nitrogen (N) concentration were determined at the tips of all 54 branches in a 6·2-m-tall Pinus radiata D. Don tree growing in a New Zealand plantation. Measurements included above- and below-canopy irradiance, leaf stable carbon isotopic composition (δ13C) and tree canopy architecture. The radiation absorption component of the model, MAESTRO, was tested on site and then used to determine the branch tip distribution of intercepted radiation. We hypothesized that in branch tip needles: (i) the allocation of nitrogen and other nutrients would be closely associated with the distribution of intercepted radiation, reflecting carbon gain optimization theory, and (ii) Ci would predominantly reflect changes in photosynthetic rate (A) rather than stomatal conductance (gs), indicating that the increase in A for a given increase in N concentration was larger than the corresponding increase in gs. Needle nitrogen concentration was poorly related to intercepted radiation, regardless of the period over which the latter was calculated. At a given height, there was a large azimuthal variation in intercepted radiation but N concentration was remarkably uniform around the tree canopy. There was, however, a linear and positive correspondence between N concentration and δ13C and needle height above ground (r2 = 0·73 and 0·68, respectively). The very strong linear correspondence between N concentration and Ci (r2 = 0·71) was interpreted, using gas exchange measurements, as supporting our second hypothesis. Recognizing the strong apical control in P. radiata and possible effects of leaf nitrogen storage in an evergreen species, we propose that the tree leader must have constituted a very strong carbon sink throughout the growing season, and that the proximity of branch tip needles to the leader affected their photosynthetic capacity and nutrient concentration, independent of intercepted radiation. This implies an integrated internal determination of resource allocation within the tree and challenges the current convention that resources are optimally distributed according to the profile of intercepted radiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...