ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (3)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 50 (2002), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: A linear instantaneous velocity model is used to describe the velocity variations in an uplifted unit that has been partly decompacted as a result of the reduction in overburden that often accompanies uplift. The model results in a series of equations for deriving values for the function parameters in the velocity–depth and the time– depth domains and for carrying out time-to-depth conversions. The formulation uses the base of the unit as a reference level to generate the reference datum from a combination of the depth of the base of the unit and a parameter that represents the decompaction factor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 49 (2001), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: Uplift and the accompanying reduction in overburden result in anomalously high velocity in the uplifted rock unit relative to its current depth. The present work utilizes the non-uniqueness of the parameters of instantaneous velocity versus depth functions as an effective tool for uplift studies. The linear function with its two parameters, V0 and k, is a very simple function and is used as the illustrative vehicle. In the parameter space, i.e. in a plot where one axis represents V0 and the other axis represents k, non-uniqueness can be represented by contours of equal goodness-of-fit values between the observed data and the fitted function. The contour delimiting a region of equivalent solutions in the parameter space is called a ‘solution trough’. Uplift corresponds to a rotation of the solution trough in the parameter space. It is shown that, in terms of relative depth changes, there are five possible configurations (five cases) of uplift in a given area (the mobile location) relative to another area (the reference location). The cases depend on whether the uplifted location had attained a (pre-uplift) maximum depth of burial that was greater than, similar to, or smaller than the maximum depth of burial at the reference location. Interpretation of the relationships between the solution troughs corresponding to the different locations makes it possible to establish which of the five cases applies to the uplifted location and to estimate the amount of uplift that the unit had undergone at that location. The difficulty in determining the reduction in velocity due to decompaction resulting from uplift is a main source of uncertainty in the estimate of the amount of uplift. This is a common problem with all velocity-based methods of uplift estimation. To help around this difficulty, the present work proposes a first-order approximation method for estimating the effect of decompaction on velocity in an uplifted area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Geophysical prospecting 45 (1997), S. 0 
    ISSN: 1365-2478
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Physics
    Notes: The conversion of seismic time to depth through the use of analytical functions has been a common procedure in seismic work for many decades. With the exception of recent examples dealing with the linear function, none of the published time-depth relationships corresponding to these functions is applicable to multilayer depth conversion. The present work redresses this situation. It presents formulae applicable to multilayer depth conversion for a large number of analytical functions. The derivation is based on a procedure generally similar to that presented by Japsen (1993). Most of the functions considered date back to a publication by Kaufman in 1953 and earlier publications. A number of other functions hitherto not known in the industry are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...