ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many abiotic environmental factors elicit the production of stress-ethylene in higher plants. To elucidate the molecular mechanisms underlying the regulation of stress-ethylene production and the physiological roles played by stress-ethylene in stress responses of plants, we studied the gene expression of ACC synthase in tobacco plants that had been subjected to environmental stresses. Four new tobacco ACC synthase cDNA fragments, NT-ACS2, NT-ACS3, NT-ACS4 and NT-ACS5, were identified and sequenced. It was found that NT-ACS2 could be induced by wounding, cold temperature and, especially, sunlight. NT-ACS4 was induced at a faster kinetics by wounding. The multiple environmental stress-responsive (MESR) NT-ACS2 gene was found to contain three introns and four exons and encode a polypeptide of 484 amino acids, 54·6 kDa and pI 6·87. Computer analysis of the 3·4 kb 5′ flanking region upstream of the ACS coding region revealed the existence of a group of putative cis-acting regulatory elements potentially conferring wounding, chilling, and UV light inducibility. Phylogenetic analysis of ACC synthase genes of different plant origins indicated that the chill-inducible NT-ACS2 gene is closely related to a chilling-inducible citrus ACS gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 27 (2004), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In order to study the effect of an interface layer on fatigue crack growth, a thin pure Al layer was sandwiched between two LY12 plates using explosive bonding. Experiment shows that as a fatigue crack approaches the interface a remote plastic zone appears in the soft Al layer. Energy dissipation in the interface leads to significant deceleration of crack growth rate. FEM analysis shows that crack arrest is associated with load and distance between the crack tip and the interface. The size of the plastic zone can be calculated and used to predict the reduction in crack growth rate. The predictions agree well with the experimental results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...